We require d/q suffixes on the memory form of these instructions to disambiguate the memory size.
We don't require it on the register forms, but need to support parsing both with and without it.
Previously we always printed the d/q suffix on the register forms, but it's redundant and
inconsistent with gcc and objdump.
After this patch we should support the d/q for parsing, but not print it when its unneeded.
llvm-svn: 360085
Reverts "[X86] Remove (V)MOV64toSDrr/m and (V)MOVDI2SSrr/m. Use 128-bit result MOVD/MOVQ and COPY_TO_REGCLASS instead"
Reverts "[TargetLowering][AMDGPU][X86] Improve SimplifyDemandedBits bitcast handling"
Eric Christopher and Jorge Gorbe Moya reported some issues with these patches to me off list.
Removing the CodeGenOnly instructions has changed how fneg is handled during fast-isel with sse/sse2. We're now emitting fsub -0.0, x instead
moving to the integer domain(in a GPR), xoring the sign bit, and then moving back to xmm. This is because the fast isel table no longer
contains an entry for (f32/f64 bitcast (i32/i64)) so the target independent fneg code fails. The use of fsub changes the behavior of nan with
respect to -O2 codegen which will always use a pxor. NOTE: We still have a difference with double with -m32 since the move to GPR doesn't work
there. I'll file a separate PR for that and add test cases.
Since removing the CodeGenOnly instructions was fixing PR41619, I'm reverting r358887 which exposed that PR. Though I wouldn't be surprised
if that bug can still be hit independent of that.
This should hopefully get Google back to green. I'll work with Simon and other X86 folks to figure out how to move forward again.
llvm-svn: 360066
The 128/256 bit version of these instructions require an 'x' or 'y' suffix to
disambiguate the memory form in att syntax.
We were allowing the same suffix in intel syntax, but it appears gas does not
do that.
gas does allow the 'x' and 'y' suffix on register and broadcast forms even
though its not needed. We were allowing it on unmasked register form, but not on
masked versions or on masked or unmasked broadcast form.
While there fix some test coverage holes so they can be extended with the 'x'
and 'y' suffix tests.
llvm-svn: 359418
Summary:
The register form of these instructions are CodeGenOnly instructions that cover
GR32->FR32 and GR64->FR64 bitcasts. There is a similar set of instructions for
the opposite bitcast. Due to the patterns using bitcasts these instructions get
marked as "bitcast" machine instructions as well. The peephole pass is able to
look through these as well as other copies to try to avoid register bank copies.
Because FR32/FR64/VR128 are all coalescable to each other we can end up in a
situation where a GR32->FR32->VR128->FR64->GR64 sequence can be reduced to
GR32->GR64 which the copyPhysReg code can't handle.
To prevent this, this patch removes one set of the 'bitcast' instructions. So
now we can only go GR32->VR128->FR32 or GR64->VR128->FR64. The instruction that
converts from GR32/GR64->VR128 has no special significance to the peephole pass
and won't be looked through.
I guess the other option would be to add support to copyPhysReg to just promote
the GR32->GR64 to a GR64->GR64 copy. The upper bits were basically undefined
anyway. But removing the CodeGenOnly instruction in favor of one that won't be
optimized seemed safer.
I deleted the peephole test because it couldn't be made to work with the bitcast
instructions removed.
The load version of the instructions were unnecessary as the pattern that selects
them contains a bitcasted load which should never happen.
Fixes PR41619.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61223
llvm-svn: 359392
Summary: If we have SSE2 we can use a MOVQ to store 64-bits and avoid falling back to a cmpxchg8b loop. If its a seq_cst store we need to insert an mfence after the store.
Reviewers: spatel, RKSimon, reames, jfb, efriedma
Reviewed By: RKSimon
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60546
llvm-svn: 359368
Many of our instructions have both a _Int form used by intrinsics and a form
used by other IR constructs. In the EVEX space the _Int versions usually cover
all the capabilities include broadcasting and rounding. While the other version
only covers simple register/register or register/load forms. For this reason
in EVEX, the non intrinsic form is usually marked isCodeGenOnly=1.
In the VEX encoding space we were less consistent, but usually the _Int version
was the isCodeGenOnly version.
This commit makes the VEX instructions match the EVEX instructions. This was
done by manually studying the AsmMatcher table so its possible I missed some
cases, but we should be closer now.
I'm thinking about using the isCodeGenOnly bit to simplify the EVEX2VEX
tablegen code that disambiguates the _Int and non _Int versions. Currently it
checks register class sizes and Record the memory operands come from. I have
some other changes I was looking into for D59266 that may break the memory check.
I had to make a few scheduler hacks to keep the _Int versions from being treated
differently than the non _Int version.
Differential Revision: https://reviews.llvm.org/D60441
llvm-svn: 358138
Years ago I moved this to an InstAlias using VR128H/VR128L. But now that we support {vex3} pseudo prefix, we need to block the optimization when it is set to match gas behavior.
llvm-svn: 358046
Scalar VEX/EVEX instructions don't use the L bit and don't look at it for decoding either.
So we should ignore it in our disassembler.
The missing instructions here were found by grepping the raw tablegen class definitions in
the tablegen debug output.
llvm-svn: 358040
The instruction's document this as W0 for the VEX encoding. But there's a
footnote mentioning that VEX.W is ignored in 64-bit mode. And the main VEX
encoding description says the VEX.W bit is ignored for instructions that are
equivalent to a legacy SSE instruction that uses REX.W to select a GPR which
would apply here.
By making this match EVEX we can remove a special case of allowing EVEX2VEX to
turn an EVEX.WIG instruction into VEX.W0.
llvm-svn: 357971
This custom inserter existed so we could do a weird thing where we pretended that the instructions support
a full address mode instead of taking a pointer in EAX/RAX. I think was largely so we could be pointer
size agnostic in the isel pattern.
To make this work we would then put the address into an LEA into EAX/RAX in front of the instruction after
isel. But the LEA is overkill when we just have a base pointer. So we end up using the LEA as a slower MOV
instruction.
With this change we now just do custom selection during isel instead and just assign the incoming address
of the intrinsic into EAX/RAX based on its size. After the intrinsic is selected, we can let isel take
care of selecting an LEA or other operation to do any address computation needed in this basic block.
I've also split the instruction into a 32-bit mode version and a 64-bit mode version so the implicit
use is properly sized based on the pointer. Without this we get comments in the assembly output about
killing eax and defing rax or vice versa depending on whether we define the instruction to use EAX/RAX.
llvm-svn: 357652
Includes a fix to emit a CheckOpcode for build_vector when immAllZerosV/immAllOnesV is used as a pattern root. This means it can't be used to look through bitcasts when used as a root, but that's probably ok. This extra CheckOpcode will ensure that the first match in the isel table will be a SwitchOpcode which is needed by the caching optimization in the ISel Matcher.
Original commit message:
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355784
This caused the first matcher in the isel table for many targets to Opc_Scope instead of Opc_SwitchOpcode. This leads to a significant increase in isel match failures.
llvm-svn: 355433
We have quite a few cases of using FP instructions for integer operations when only AVX1 is available. Then we switch to integer instructions with AVX2. In a lot of these cases execution domain fixing will take care of turning FP instructions into integer if its profitable.
With this patch we just keep on using the FP instructions even with AVX2. I've only handled some cases that don't require messing with patterns that are defined in the instruction definition. Those will require more subtle multiclass work possibly involving null_frag, hasSideEffects = 0, etc.
Differential Revision: https://reviews.llvm.org/D58470
llvm-svn: 355361
We were using VPBLENDW for v2i64 and VBLENDPD for v4i64. VPBLENDD has better throughput than VPBLENDW on some CPUs so it makes sense to use it when possible. VBLENDPD will probably become VBLENDD during execution domain fixing, but we might as well use integer in isel while we can.
This should work around some issues with the domain fixing pass prefering PBLENDW when we start with PBLENDW. There may still be some v8i16 cases that could use PBLENDD.
llvm-svn: 355281
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355224
These allows use to use the same set of isel patterns for sra/srl/shl which are undefined for out of range shifts and intrinsic shifts which aren't undefined.
Doing this late allows DAG combine to have every opportunity to optimize the sra/srl/shl nodes.
This removes about 7000 bytes from the isel table and simplies the td files.
llvm-svn: 355071
Summary:
Previously we used BLENDPS/BLENDPD but that puts the blend in the FP domain. Under optsize, the two address instruction pass can cause blendps/blendpd to commute to blendps/blendpd. But we probably shouldn't do that if the original type was a integer. So use pblendw instead.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58574
llvm-svn: 354755
r354363 caused https://crbug.com/934963#c1, which has a plain C reduced
test case.
I also had to revert some dependent changes:
- r354648
- r354647
- r354640
- r354511
llvm-svn: 354713
This avoids depending on the peephole pass to do load folding.
Also adds some load folding for some insert_subvector patterns that use blend.
All of this was found by temporarily adding TB_NO_FORWARD to the blend immediate entries in the load folding tables.
I've added -disable-peephole to some of the affected tests from that experiment to ensure we're testing isel patterns.
llvm-svn: 354511
D42042 introduced the ability for the ExecutionDomainFixPass to more easily change between BLENDPD/BLENDPS/PBLENDW as the domains required.
With this ability, we can avoid most bitcasts/scaling in the DAG that was occurring with X86ISD::BLENDI lowering/combining, blend with the vXi32/vXi64 vectors directly and use isel patterns to lower to the float vector equivalent vectors.
This helps the shuffle combining and SimplifyDemandedVectorElts be more aggressive as we lose track of fewer UNDEF elements than when we go up/down through bitcasts.
I've introduced a basic blend(bitcast(x),bitcast(y)) -> bitcast(blend(x,y)) fold, there are more generalizations I can do there (e.g. widening/scaling and handling the tricky v16i16 repeated mask case).
The vector-reduce-smin/smax regressions will be fixed in a future improvement to SimplifyDemandedBits to peek through bitcasts and support X86ISD::BLENDV.
Reapplied after reversion at rL353699 - AVX2 isel fix was applied at rL354358, additional test at rL354360/rL354361
Differential Revision: https://reviews.llvm.org/D57888
llvm-svn: 354363
This was the cause of the regression in D57888 - the commuted load pattern wasn't hidden by the predicate so once we enabled v4i32 blends on SSE41+ targets then isel was incorrectly matched against AVX2+ instructions.
llvm-svn: 354358
The VBROADCAST combines and SimplifyDemandedVectorElts improvements mean that we now more consistently use shorter (128-bit) X86vzload input operands.
Follow up to D58053
llvm-svn: 354346
D42042 introduced the ability for the ExecutionDomainFixPass to more easily change between BLENDPD/BLENDPS/PBLENDW as the domains required.
With this ability, we can avoid most bitcasts/scaling in the DAG that was occurring with X86ISD::BLENDI lowering/combining, blend with the vXi32/vXi64 vectors directly and use isel patterns to lower to the float vector equivalent vectors.
This helps the shuffle combining and SimplifyDemandedVectorElts be more aggressive as we lose track of fewer UNDEF elements than when we go up/down through bitcasts.
I've introduced a basic blend(bitcast(x),bitcast(y)) -> bitcast(blend(x,y)) fold, there are more generalizations I can do there (e.g. widening/scaling and handling the tricky v16i16 repeated mask case).
The vector-reduce-smin/smax regressions will be fixed in a future improvement to SimplifyDemandedBits to peek through bitcasts and support X86ISD::BLENDV.
Differential Revision: https://reviews.llvm.org/D57888
llvm-svn: 353610
Account for bypass delays when computing the latency of scalar int-to-float
conversions.
On Jaguar we need to account for an extra 6cy latency (see AMD fam16h SOG).
This patch also fixes the number of micropcodes for the register-memory variants
of scalar int-to-float conversions.
Differential Revision: https://reviews.llvm.org/D57148
llvm-svn: 352518
Summary: We have isel patterns for this, but we're missing some load patterns and all broadcast patterns. A DAG combine seems like a better fit for this.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56971
llvm-svn: 352260
This patch adds a new ReadAdvance definition named ReadInt2Fpu.
ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by
data transfers from the integer unit to the floating point unit.
ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all
x86 models excluding BtVer2. That means, this patch is only a functional change
for the Jaguar cpu model only.
Tablegen definitions for instructions (V)PINSR* have been updated to account for
the new ReadInt2Fpu. That read is mapped to the the GPR input operand.
On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch,
that extra delay was added to the opcode latency. In practice, the insert opcode
only executes for 1cy. Most of the actual latency is actually contributed by the
so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR*
latency is defined by expression f+1, where f is defined as a forwarding delay
from the integer unit to the fpu.
When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC
(only when flag -print-schedule is speified), we now need to account for any
extra forwarding delays. We do this by checking if scheduling classes declare
any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td:
"A negative advance effectively increases latency, which may be used for
cross-domain stalls". When computing the instruction latency for the purpose of
our scheduling tests, we now add any extra delay to the formula. This avoids
regressing existing codegen and mca schedule tests. It comes with the cost of an
extra (but very simple) hook in MCSchedModel.
Differential Revision: https://reviews.llvm.org/D57056
llvm-svn: 351965
When we are inserting 1 "inline" element, and zeroing 2 of the other elements then we can safely commute the insertps source inputs to improve memory folding.
Differential Revision: https://reviews.llvm.org/D56843
llvm-svn: 351807
Summary:
Use X86ISD::VFPROUND in the instruction isel patterns. Add new patterns for ISD::FP_ROUND to maintain support for fptrunc in IR.
In the process I found a couple duplicate isel patterns which I also deleted in this patch.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56991
llvm-svn: 351762
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This sends these intrinsics through isel in a much more normal way. This should allow addressing mode matching in isel to make better use of the displacement field.
Differential Revision: https://reviews.llvm.org/D56827
llvm-svn: 351570
Previously we used ISD::SHL and ISD::SRL to represent these in SelectionDAG. ISD::SHL/SRL interpret an out of range shift amount as undefined behavior and will constant fold to undef. While the intrinsics are defined to return 0 for out of range shift amounts. A previous patch added a special node for VPSRAV to produce all sign bits.
This was previously believed safe because undefs frequently get turned into 0 either from the constant pool or a desire to not have a false register dependency. But undef is treated specially in some optimizations. For example, its ignored in detection of vector splats. So if the ISD::SHL/SRL can be constant folded and all of the elements with in bounds shift amounts are the same, we might fold it to single element broadcast from the constant pool. This would not put 0s in the elements with out of bounds shift amounts.
We do have an existing InstCombine optimization to use shl/lshr when the shift amounts are all constant and in bounds. That should prevent some loss of constant folding from this change.
Patch by zhutianyang and Craig Topper
Differential Revision: https://reviews.llvm.org/D56695
llvm-svn: 351381
This cleans up the duplication we have with both intrinsic isel patterns and vselect isel patterns. This should also allow the intrinsics to get SimplifyDemandedBits support for the condition.
I've switched the canonical pattern in isel to use the X86ISD::BLENDV node instead of VSELECT. Since it always seemed weird to move from BLENDV with its relaxed rules on condition bits to VSELECT which has strict rules about all bits of the condition element being the same. Its more correct to go from VSELECT to BLENDV.
Differential Revision: https://reviews.llvm.org/D56771
llvm-svn: 351380
The missed load folding noticed in D55898 is visible independent of that change
either with an adjusted IR pattern to start or with AVX2/AVX512 (where the build
vector becomes a broadcast first; movddup is not produced until we get into isel
via tablegen patterns).
Differential Revision: https://reviews.llvm.org/D55936
llvm-svn: 350005
Migrate the X86 backend from X86ISD opcodes ADDS and SUBS to generic
ISD opcodes SADDSAT and SSUBSAT. This also improves scodegen for
@llvm.sadd.sat() and @llvm.ssub.sat() intrinsics.
This is a followup to D55787 and part of PR40056.
Differential Revision: https://reviews.llvm.org/D55833
llvm-svn: 349520
Replace the X86ISD opcodes ADDUS and SUBUS with generic ISD opcodes
UADDSAT and USUBSAT. As a side-effect, this also makes codegen for
the @llvm.uadd.sat and @llvm.usub.sat intrinsics reasonable.
This only replaces use in the X86 backend, and does not move any of
the ADDUS/SUBUS X86 specific combines into generic codegen.
Differential Revision: https://reviews.llvm.org/D55787
llvm-svn: 349481
These are AVX2 instructions, but have been incorrectly marked in tablegen for a while. This wasn't a problem until r346784 switched the patterns to use target independent ISD opcodes. This made the patterns visible to fast isel.
Fixes PR39733
llvm-svn: 347375
Previously, the extend_vector_inreg opcode required their input register to be the same total width as their output. But this doesn't match up with how the X86 instructions are defined. For X86 the input just needs to be a legal type with at least enough elements to cover the output.
This patch weakens the check on these nodes and allows them to be used as long as they have more input elements than output elements. I haven't changed type legalization behavior so it will still create them with matching input and output sizes.
X86 will custom legalize these nodes by shrinking the input to be a 128 bit vector and once we've done that we treat them as legal operations. We still have one case during type legalization where we must custom handle v64i8 on avx512f targets without avx512bw where v64i8 isn't a legal type. In this case we will custom type legalize to a *extend_vector_inreg with a v16i8 input. After that the input is a legal type so type legalization should ignore the node and doesn't need to know about the relaxed restriction. We are no longer allowed to use the default expansion for these nodes during vector op legalization since the default expansion uses a shuffle which required the widths to match. Custom legalization for all types will prevent us from reaching the default expansion code.
I believe DAG combine works correctly with the released restriction because it doesn't check the number of input elements.
The rest of the patch is changing X86 to use either the vector_inreg nodes or the regular zero_extend/sign_extend nodes. I had to add additional isel patterns to handle any_extend during isel since simplifydemandedbits can create them at any time so we can't legalize to zero_extend before isel. We don't yet create any_extend_vector_inreg in simplifydemandedbits.
Differential Revision: https://reviews.llvm.org/D54346
llvm-svn: 346784
These promotions add additional bitcasts to the SelectionDAG that can pessimize computeKnownBits/computeNumSignBits. It also seems to interfere with broadcast formation.
This patch removes the promotion and adds isel patterns instead.
The increased table size is more than I would like, but hopefully we can find some canonicalizations or other tricks to start pruning out patterns going forward.
Differential Revision: https://reviews.llvm.org/D53268
llvm-svn: 345408
I've included a fix to DAGCombiner::ForwardStoreValueToDirectLoad that I believe will prevent the previous miscompile.
Original commit message:
Theoretically this was done to simplify the amount of isel patterns that were needed. But it also meant a substantial number of our isel patterns have to match an explicit bitcast. By making the vXi32/vXi16/vXi8 types legal for loads, DAG combiner should be able to change the load type to rem
I had to add some additional plain load instruction patterns and a few other special cases, but overall the isel table has reduced in size by ~12000 bytes. So it looks like this promotion was hurting us more than helping.
I still have one crash in vector-trunc.ll that I'm hoping @RKSimon can help with. It seems to relate to using getTargetConstantFromNode on a load that was shrunk due to an extract_subvector combine after the constant pool entry was created. So we end up decoding more mask elements than the lo
I'm hoping this patch will simplify the number of patterns needed to remove the and/or/xor promotion.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D53306
llvm-svn: 344965
This makes fast isel treat all legal vector types the same way. Previously only vXi64 was in the fast-isel tables.
This unfortunately prevents matching of andn by fast-isel for these types since the requires SelectionDAG. But we already had this issue for vXi64. So at least we're consistent now.
Interestinly it looks like fast-isel can't handle instructions with constant vector arguments so the the not part of the andn patterns is selected with SelectionDAG. This explains why VPTERNLOG shows up in some of the tests.
This is a subset of D53268. As I make progress on that, I will try to reduce the number of lines in the tablegen files.
llvm-svn: 344884