Use VGPR_32 register class instead. These two register classes were
identical and having separate classes was causing
SIInstrInfo::isLegalOperands() to be overly conservative in some cases.
This change is necessary to prevent future paches from missing a folding
opportunity in fneg-fabs.ll.
llvm-svn: 225382
In DS write instructions, the address operand comes before the value
operand(s) which is reversed from every other instruction type.
The SIInsertWait assumed that the first use for each instruction
was the value, so for DS write it was protecting the address
operand with s_waitcnt instructions when it should have been
protecting the value operand.
llvm-svn: 225289
This is equivalent to the AMDGPUTargetMachine now, but it is the
starting point for separating R600 and GCN functionality into separate
targets.
It is recommened that users start using the gcn triple for GCN-based
GPUs, because using the r600 triple for these GPUs will be deprecated in
the future.
llvm-svn: 225277
Make sure they all have llvm_unreachable on the default path out of the switch. Remove unnecessary "default: break". Remove a 'return' after unreachable. Fix some indentation.
llvm-svn: 225114
The issues was that AArch64 has additional restrictions on when local
relocations can be used. We have to take those into consideration when
deciding to put a L symbol in the symbol table or not.
Original message:
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225048
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 224985
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
llvm-svn: 224691
mubuf instructions now define the soffset field using the SCSrc_32
register class which indicates that only SGPRs and inline constants
are allowed.
llvm-svn: 224622
The returned operand needs to be permuted for the unordered
compares. Also fix incorrectly producing fmin_legacy / fmax_legacy
for f64, which don't exist.
llvm-svn: 224094
This is nice for the instruction patterns, but it complicates
min / max matching. The select doesn't have the correct type and would
require looking through the bitcasts for the real float operands.
llvm-svn: 224092
Add an option to disable optimization to shrink truncated larger type
loads to smaller type loads. On SI this prevents using scalar load
instructions in some cases, since there are no scalar extloads.
llvm-svn: 224084
This was checking if pseudo-operands like the source
modifiers were using the constant bus, which happens to work
because the values these all can be happen to be valid inline
immediates.
This fixes a later commit which starts checking the register class
of the operands.
llvm-svn: 224078
Previously print+verify passes were added in a very unsystematic way, which is
annoying when debugging as you miss intermediate steps and allows bugs to stay
unnotice when no verification is performed.
To make this change practical I added the possibility to explicitely disable
verification. I used this option on all places where no verification was
performed previously (because alot of places actually don't pass the
MachineVerifier).
In the long term these problems should be fixed properly and verification
enabled after each pass. I'll enable some more verification in subsequent
commits.
This is the 2nd attempt at this after realizing that PassManager::add() may
actually delete the pass.
llvm-svn: 224059
Previously print+verify passes were added in a very unsystematic way, which is
annoying when debugging as you miss intermediate steps and allows bugs to stay
unnotice when no verification is performed.
To make this change practical I added the possibility to explicitely disable
verification. I used this option on all places where no verification was
performed previously (because alot of places actually don't pass the
MachineVerifier).
In the long term these problems should be fixed properly and verification
enabled after each pass. I'll enable some more verification in subsequent
commits.
llvm-svn: 224042
There are 3 changes:
- Convert 32-bit S_LSHL/LSHR/ASHR to their V_*REV variants for VI
- Lower RSQ_CLAMP for VI
- Don't generate MIN/MAX_LEGACY on VI
llvm-svn: 223604
Use the MCAsmInfo instead of the DataLayout, and allow
specifying a custom prefix for labels specifically. HSAIL
requires that labels begin with @, but global symbols with &.
llvm-svn: 223323
Select i1 logical ops directly to 64-bit SALU instructions.
Vector i1 values are always really in SGPRs, with each
bit for each item in the wave. This saves about 4 instructions
when and/or/xoring any condition, and also helps write conditions
that need to be passed in vcc.
This should work correctly now that the SGPR live range
fixing pass works. More work is needed to eliminate the VReg_1
pseudo regclass and possibly the entire SILowerI1Copies pass.
llvm-svn: 223206
The loop is over the operands of an instruction, and checks the
register with the sub reg index of the dest register. This probably
meant to be checking the sub reg index of the same operand.
llvm-svn: 223205
m0 is treated as a virtual register class with a single register
rather than the physical register it really is. This was updating
the live range of the used virtual copy of m0 from the first ds_read
instruction, and leaving the unused copy unchanged. This resulted in a
"Live segment doesn't end at a valid instruction" verifier error because
the erased instructions. Update the live range of the second copy (which
should be dead).
No test since I'm not sure how to trigger this with SIFoldOperands
enabled.
llvm-svn: 223203
We just needed to remove the assertion in
AMDGPURegisterInfo::getFrameRegister(), which is called when
initializing the parser for inline assembly.
llvm-svn: 223197
- Fix missing SALU format bits
- Remove unused isSALUInstr
- Add isVALU
- Switch isDS to use a bit like the others
- Move SIInstrInfo::is* functions to header
- Reorder so they are approximately sorted by type (SALU, VALU, memory)
llvm-svn: 223038
This sort of doesn't matter since the setcc type is i1, but
this previously was using the default UndefinedBooleanContent. This
makes it more consistent with R600. This enables more optimizations
which typically give up on UndefinedBooleanContent. For example,
there is already a special case target DAG combine for
setcc + sext which can be eliminated in favor of what the generic
DAG combiner can do if it assumes boolean values are sign extended.
Since -1 is an inline immediate, using it is basically free and the
backend already uses it when a boolean value is needed in a wider type.
llvm-svn: 222850
This fixes moving boolean constants into registers before operating
on them. They get permuted and shrunk down to e32 anyway later. This
is a temporary fix until the patch that removes these pseudos is
committed.
llvm-svn: 222844
Only the super register flat_scr was marked as reserved,
so in some cases with high register usage it would still
try to allocate the subregisters.
llvm-svn: 222737
This s_mov_b32 will write to a virtual register from the M0Reg
class and all the ds instructions now take an extra M0Reg explicit
argument.
This change is necessary to prevent issues with the scheduler
mixing together instructions that expect different values in the m0
registers.
llvm-svn: 222583
A register operand that has a common sub-class with its instruction's
defined register class is not always legal. For example,
SReg_32 and M0Reg both have a common sub-class, but we can't
use an SReg_32 in instructions that expect a M0Reg.
This prevents the llvm.SI.sendmsg.ll test from failing when the fold
operand pass is added.
llvm-svn: 222368
This partially makes up for not having address spaces
used for alias analysis in some simple cases.
This is not yet enabled by default so shouldn't change anything yet.
llvm-svn: 222286
Assuming unmodeled side effects interferes with some scheduling
opportunities.
Don't put it in the base class of DS instructions since there
are a few weird effecting, non load/store instructions there.
llvm-svn: 222285
This should expose more of the actually used VALU
instructions to the machine optimization passes.
This also should help getting i1 handling into a better state.
For not entirly understood reasons, this fixes the split-scalar-i64-add.ll
test where a 64-bit add would only partially be moved to the VALU
resulting in use of undefined VCC.
llvm-svn: 222256
This was resulting in use of a register after a kill.
For some reason this showed up as a problem in many tests
when moving the SIFixSGPRCopies pass closer to instruction
selection.
llvm-svn: 222175
This gets the correct NaN behavior based on the compare type
the hardware uses. This now passes the new piglit test I have
for this on SI.
Add stricter tests for the operand order.
llvm-svn: 222079
This is so it could potentially be used by SI. However, the current
implementation does not always produce correct results, so the
IntegerDivisionPass is being used instead.
llvm-svn: 222072
If we have spilled the value of the m0 register, then we need to restore
it with v_readlane_b32 to a regular sgpr, because v_readlane_b32 can't
write to m0.
v_readlane_b32 can't write to m0, so
llvm-svn: 222036
These were directly using the old base instruction
class, and specifying the wrong register classes
for operands. The operands can be the other special
inputs besides SGPRs. The op name was also being
directly used for the asm string, so this was printed
without any operands.
llvm-svn: 221921
If a function is just an unreachable, this would hit a
"this is not a MachO target" assertion because of setting
HasSubsectionViaSymbols.
llvm-svn: 221920
e.g. v_mad_f32 a, b, c -> v_mad_f32 b, a, c
This simplifies matching v_madmk_f32.
This looks somewhat surprising, but it appears to be
OK to do this. We can commute src0 and src1 in all
of these instructions, and that's all that appears
to matter.
llvm-svn: 221910
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
This matches the format produced by the AMD proprietary driver.
//==================================================================//
// Shell script for converting .ll test cases: (Pass the .ll files
you want to convert to this script as arguments).
//==================================================================//
; This was necessary on my system so that A-Z in sed would match only
; upper case. I'm not sure why.
export LC_ALL='C'
TEST_FILES="$*"
MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r`
for f in $TEST_FILES; do
# Check that there are SI tests:
grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f
if [ $? -eq 0 ]; then
for match in $MATCHES; do
sed -i -e "s/\([ :]$match\)/\L\1/" $f
done
# Try to get check lines with partial instruction names
sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f
fi
done
sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll
sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll
sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll
sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll
sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll
//==================================================================//
// Shell script for converting .td files (run this last)
//==================================================================//
export LC_ALL='C'
sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td
sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td
llvm-svn: 221350
The problem is mostly that variadic output instruction
aren't handled, so it is rejected for having an inconsistent
number of operands, and then the right number of operands
isn't emitted.
llvm-svn: 221117
It appears to ignore or find ambiguous MachineInstrBuilder's conversion
operators that allow conversion to MachineInstr* and
MachineBasicBlock::bundle_iterator.
As a workaround, add an explicit way to get the MachineInstr.
llvm-svn: 221017
We need to figure out how to track ptrtoint values all the
way until result is converted back to a pointer in order
to correctly rewrite the pointer type.
llvm-svn: 220997
Every target we support has support for assembly that looks like
a = b - c
.long a
What is special about MachO is that the above combination suppresses the
production of a relocation.
With this change we avoid producing the intermediary labels when they don't
add any value.
llvm-svn: 220256
The generic code trying to use findCommutedOpIndices won't
understand that it needs to swap the modifier operands also,
so it should fail if they are set.
llvm-svn: 220064
The SelectDS1Addr1Offset complex pattern always tries to store constant
lds pointers in the offset operand and store a zero value in the addr operand.
Since the addr operand does not accept immediates, the zero value
needs to first be copied to a register.
This newly created zero value will not go through normal instruction
selection, so we need to manually insert a V_MOV_B32_e32 in the complex
pattern.
This bug was hidden by the fact that if there was another zero value
in the DAG that had not been selected yet, then the CSE done by the DAG
would use the unselected node for the addr operand rather than the one
that was just created. This would lead to the zero value being selected
and the DAG automatically inserting a V_MOV_B32_e32 instruction.
llvm-svn: 219848
This effectively reverts revert 219707. After fixing the test to work with
new function name format and renamed intrinsic.
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219710
v2: Add SI lowering
Add test
v3: Place work dimensions after the kernel arguments.
v4: Calculate offset while lowering arguments
v5: rebase
v6: change prefix to AMDGPU
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219705
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
llvm-svn: 219533
LLVM assumes INSERT_SUBREG will always have register operands, so
we need to legalize non-register operands, like FrameIndexes, to
avoid random assertion failures.
llvm-svn: 219420
The main reason for this is that the MCAsmInfo class,
which we were previously using as the base class, sets
PrivateGlobalPrefix to "L", which causes all global
functions that start with L to be treated as local symbols.
MCAsmInfoELF sets PrivateGlobalPrefix to ".L", which is what
we want, and it is probably a good idea to use this as the
base class anyway, since we are emitting ELF binaries.
llvm-svn: 219237
Added a FIXME coment instead, we need to handle the case where the
two DS instructions being compared have different numbers of operands.
llvm-svn: 219236