This adds the last two missing floating-point condition codes (FCMP_UEQ and
FCMP_ONE) also to the branch selection. In these two cases an additonal branch
instruction is required.
This also adds unit tests to checks all the different condition codes.
This is related o rdar://problem/18358882.
llvm-svn: 217966
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).
Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.
llvm-svn: 217928
Allow handling of vectors during return lowering at least for little endian machines.
This was restricted in r208200 to fix it for big endian machines (according to
the comment), but it also disabled it for little endian too.
llvm-svn: 217846
This lowers frem to a runtime libcall inside fast-isel.
The test case also checks the CallLoweringInfo bug that was exposed by this
change.
This fixes rdar://problem/18342783.
llvm-svn: 217833
... Just make sure we check uses first so we see the kill first. It
turns out ignoring defs gives some pretty nasty runtime failures.
I'm certain this is the fix but I'm still reducing a testcase.
llvm-svn: 217735
Vector MUL/MLAs have tied operands, which gives us extra constraints
that we currently can't handle. Instead of silently doing the wrong
thing, remove support to be readded later properly.
llvm-svn: 217690
Defs are seen before uses, so a def without the kill flag doesn't necessarily
mean that the register is not killed on that instruction. It may be killed
in a later use operand.
llvm-svn: 217689
The increase of the interleave factor to 4 has side-effects
like performance losses eg. due to reminder loops being executed
more frequently and may increase code size. It requires more
analysis and careful heuristic tuning. Expect double digit gains
in small benchmarks like lowercase.c and losses in puzzle.c.
llvm-svn: 217540
"Unroll" is not the appropriate name for this variable. Clang already uses
the term "interleave" in pragmas and metadata for this.
Differential Revision: http://reviews.llvm.org/D5066
llvm-svn: 217528
This adds target specific support for using the PBQP register allocator on the
AArch64, for the A57 cpu.
By default, the PBQP allocator is not used, unless explicitely required
on the command line with "-aarch64-pbqp".
llvm-svn: 217504
using static relocation model and small code model.
Summary: currently we generate GOT based relocations for weak symbol
references regardless of the underlying relocation model. This should
be change so that in static relocation model we use a constant pool
load instead.
Patch from: Keith Walker
Reviewers: Renato Golin, Tim Northover
llvm-svn: 217503
Patched by Sergey Dmitrouk.
This pass tries to make consecutive compares of values use same operands to
allow CSE pass to remove duplicated instructions. For this it analyzes
branches and adjusts comparisons with immediate values by converting:
GE -> GT
GT -> GE
LT -> LE
LE -> LT
and adjusting immediate values appropriately. It basically corrects two
immediate values towards each other to make them equal.
llvm-svn: 217220
Follow up to r217138, extending the logic to other NEON-immediate instructions.
As before, the instruction already performs the correct operation and we're
just using a different type for convenience, so we want a true nop-cast.
Patch by Asiri Rathnayake.
llvm-svn: 217159
We were materialising big-endian constants using DAG nodes with types different
from what was requested, followed by a bitcast. This is fine on little-endian
machines where bitcasting is a nop, but we need a slightly different
representation for big-endian. This adds a new set of NVCAST (natural-vector
cast) operations which are always nops.
Patch by Asiri Rathnayake.
llvm-svn: 217138
Summary:
Split shouldExpandAtomicInIR() into different versions for Stores/Loads/RMWs/CmpXchgs.
Makes runOnFunction cleaner (no more redundant checking/casting), and will help moving
the X86 backend to this pass.
This requires a way of easily detecting which instructions are atomic.
I followed the pattern of mayReadFromMemory, mayWriteOrReadMemory, etc.. in making
isAtomic() a method of Instruction implemented by a switch on the opcodes.
Test Plan: make check
Reviewers: jfb
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D5035
llvm-svn: 217080
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.
Reviewed by Eric
llvm-svn: 217075
Things got a little bit messy over the years and it is time for a little bit
spring cleaning.
This first commit is focused on the FastISel base class itself. It doxyfies all
comments, C++11fies the code where it makes sense, renames internal methods to
adhere to the coding standard, and clang-formats the files.
Reviewed by Eric
llvm-svn: 217060
This reapplies r216805 with a fix to a copy-past error, which resulted in an
incorrect register class.
Original commit message:
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
llvm-svn: 217019
There is already target-dependent instruction selection support for Adds/Subs to
support compares and the intrinsics with overflow check. This takes advantage of
the existing infrastructure to also support Add/Sub, which allows the folding of
immediates, sign-/zero-extends, and shifts.
This fixes rdar://problem/18207316.
llvm-svn: 217007
This uses the target-dependent selection code for shifts first, which allows us
to create better code for shifts with immediates and sign-/zero-extend folding.
Vector type are not handled yet and the code falls back to target-independent
instruction selection for these cases.
This fixes rdar://problem/17907920.
llvm-svn: 216985
FastISel for AArch64 supports more value types than are actually legal. Use a
dedicated helper function to reflect this.
It is very similar to the isLoadStoreTypeLegal function, with the exception
that vector types are not supported yet.
llvm-svn: 216984
This change moves FastISel for AArch64 to target-dependent instruction selection
only. This change replicates the existing target-independent behavior, therefore
there are no changes to the unit tests or new tests.
Future changes will take advantage of this change and update functionality
and unit tests.
llvm-svn: 216955
This removes static initializers from the backends which generate this data, and also makes this struct match the other Tablegen generated structs in behaviour
Reviewed by Andy Trick and Chandler C
llvm-svn: 216919
Summary:
Left shift of negative integer is an undefined behavior, and
is reported by UBSan. It's ok for imm values to be negative, so we can
just replace left shifts with multiplications.
Test Plan: check-llvm test suite
Reviewers: t.p.northover
Reviewed By: t.p.northover
Subscribers: aemerson, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D5132
llvm-svn: 216910
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
llvm-svn: 216805
This patch checks for DAG patterns that are an add or a sub followed by a
compare on 16 and 8 bit inputs. Since AArch64 does not support those types
natively they are legalized into 32 bit values, which means that mask operations
are inserted into the DAG to emulate overflow behaviour. In many cases those
masks do not change the result of the processing and just introduce a dependent
operation, often in the middle of a hot loop.
This patch detects the relevent DAG patterns and then tests to see if the
transforms are equivalent with and without the mask, removing the mask if
possible. The exact mechanism of this patch was discusses in
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-July/074444.html
There is a reasonably good chance there are missed oppurtunities due to similiar
(but not identical) DAG patterns that could be funneled into this test, adding
them should be simple if we see test cases.
Tests included.
rdar://13754426
llvm-svn: 216776
When we select a trunc instruction we don't emit any code if the type is already
i32 or smaller. This is because the instruction that uses the truncated value
will deal with it.
This behavior can incorrectly transfer a kill flag, which was meant for the
result of the truncate, onto the source register.
%2 = trunc i32 %1 to i16
... = ... %2 -> ... = ... vreg1 <kill>
... = ... %1 ... = ... vreg1
This commit fixes this by emitting a COPY instruction, so that the result and
source register are distinct virtual registers.
This fixes rdar://problem/18178188.
llvm-svn: 216750
In an llvm-stress generated test, we were trying to create a v0iN type and
asserting when that failed. This case could probably be handled by the
function, but not without added complexity and the situation it arises in is
sufficiently odd that there's probably no benefit anyway.
Should fix PR20775.
llvm-svn: 216725
and forget about the previously used accumulator.
Coming up with a simple testcase is not easy, as this highly depends on
what the register allocator is doing: this issue showed up while working
with the PBQP allocator, which produced a different allocation scheme.
A testcase would need to come up with chain starting in D[0-7], then
moving to D[8-15], followed by a call to a function whose regmask
clobbers the starting accumulator in D[0-7], then another use of the chain.
Fixed some formatting, added some invariant checks while there.
llvm-svn: 216721
This fix checks first if the instruction to be folded (e.g. sign-/zero-extend,
or shift) is in the same machine basic block as the instruction we are folding
into.
Not doing so can result in incorrect code, because the value might not be
live-out of the basic block, where the value is defined.
This fixes rdar://problem/18169495.
llvm-svn: 216700
The AArch64 target lowering for [zs]ext of vectors is set up to handle
input simple types and expects the generic SDag path to do something reasonable
with anything that's not a simple type. The code, however, was only
checking that the result type was a simple type and assuming that
implied that the source type would also be a simple type. That's not a
valid assumption, as operations like "zext <1 x i1> %0 to <1 x i32>"
demonstrate. The fix is to simply explicitly validate the source type
as well as the result type.
PR20791
llvm-svn: 216689
Currently instructions are folded very aggressively into the memory operation,
which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
If the computed address is used by only memory operations in the same basic
block, then it is safe to fold them. This is because all memory operations will
fold the address computation and the original computation will never be emitted.
This fixes rdar://problem/18142857.
llvm-svn: 216629
When the address comes directly from a shift instruction then the address
computation cannot be folded into the memory instruction, because the zero
register is not available as a base register. Simplify addess needs to emit the
shift instruction and use the result as base register.
llvm-svn: 216621
Use the zero register directly when possible to avoid an unnecessary register
copy and a wasted register at -O0. This also uses integer stores to store a
positive floating-point zero. This saves us from materializing the positive zero
in a register and then storing it.
llvm-svn: 216617
This teaches the AArch64 backend to deal with the operations required
to deal with the operations on v4f16 and v8f16 which are exposed by
NEON intrinsics, plus the add, sub, mul and div operations.
llvm-svn: 216555
When a shift with extension or an add with shift and extension cannot be folded
into the memory operation, then the address calculation has to be materialized
separately. While doing so the code forgot to consider a possible sign-/zero-
extension. This fix folds now also the sign-/zero-extension into the add or
shift instruction which is used to materialize the address.
This fixes rdar://problem/18141718.
llvm-svn: 216511
It seems on Darwin the illegal round-trip ::iterator -> MachineInstr* -> ::iterator breaks execution horribly when the iterator is not a real MachineInstr, like ::end().
llvm-svn: 216455
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)
llvm-svn: 216371
AtomicExpandLoadLinked is currently rather ARM-specific. This patch is the first of
a group that aim at making it more target-independent. See
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075873.html
for details
The command line option is "atomic-expand"
llvm-svn: 216231
This is mostly achieved by providing the correct register class manually,
because getRegClassFor always returns the GPR*AllRegClass for MVT::i32 and
MVT::i64.
Also cleanup the code to use the FastEmitInst_* method whenever possible. This
makes sure that the operands' register class is properly constrained. For all
the remaining cases this adds the missing constrainOperandRegClass calls for
each operand.
llvm-svn: 216225
The AdvSIMD pass may produce copies that are not coalescer-friendly. The
peephole optimizer knows how to fix that as demonstrated in the test case.
<rdar://problem/12702965>
llvm-svn: 216200
This fixes a bug I introduced in a previous commit (r216033). Sign-/Zero-
extension from i1 cannot be folded into the ADDS/SUBS instructions. Instead both
operands have to be sign-/zero-extended with separate instructions.
Related to <rdar://problem/17913111>.
llvm-svn: 216073
Use FMOVWSr/FMOVXDr instead of FMOVSr/FMOVDr, which have the proper register
class to be used with the zero register. This makes the MachineInstruction
verifier happy again.
This is related to <rdar://problem/18027157>.
llvm-svn: 216040
Factor out the ADDS/SUBS instruction emission code into helper functions and
make the helper functions more clever to support most of the different ADDS/SUBS
instructions the architecture support. This includes better immedediate support,
shift folding, and sign-/zero-extend folding.
This fixes <rdar://problem/17913111>.
llvm-svn: 216033
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.
Original commit message:
FastISel didn't take much advantage of the different addressing modes available
to it on AArch64. This commit allows the ComputeAddress method to recognize more
addressing modes that allows shifts and sign-/zero-extensions to be folded into
the memory operation itself.
For Example:
lsl x1, x1, #3 --> ldr x0, [x0, x1, lsl #3]
ldr x0, [x0, x1]
sxtw x1, w1
lsl x1, x1, #3 --> ldr x0, [x0, x1, sxtw #3]
ldr x0, [x0, x1]
llvm-svn: 216013
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.
Original commit message:
This change materializes now the value "0" from the zero register.
The zero register can be folded by several instruction, so no
materialization is need at all.
Fixes <rdar://problem/17924413>.
llvm-svn: 216009
This fixes a few BuildMI callsites where the result register was added by
using addReg, which is per default a use and therefore an operand register.
Also use the zero register as result register when emitting a compare
instruction (SUBS with unused result register).
llvm-svn: 215997
Summary:
Make use of isAtLeastRelease/Acquire in the ARM/AArch64 backends
These helper functions are introduced in D4844.
Depends D4844
Test Plan: make check-all passes
Reviewers: jfb
Subscribers: aemerson, llvm-commits, mcrosier, reames
Differential Revision: http://reviews.llvm.org/D4937
llvm-svn: 215902
Externally-defined functions with weak linkage should not be
tail-called on ARM or AArch64, as the AAELF spec requires normal calls
to undefined weak functions to be replaced with a NOP or jump to the
next instruction. The behaviour of branch instructions in this
situation (as used for tail calls) is implementation-defined, so we
cannot rely on the linker replacing the tail call with a return.
llvm-svn: 215890
ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
llvm-svn: 215887
The floating-point value positive zero (+0.0) is a valid immedate value
according to isFPImmLegal. As a result AArch64 FastISel went ahead and
used the immediate version of fmov to materialize the constant.
The problem is that the immediate version of fmov cannot encode an imediate for
postive zero. Instead a fmov from the zero register was supposed to be used in
this case.
This fix adds handling for this special case and uses fmov from the zero
register to materialize a positive zero (negative zeroes go to the constant
pool).
There is no test case for this, because this code is currently dead. It will be
enabled in a future commit and I will add a test case in a separate commit
after that.
This fixes <rdar://problem/18027157>.
llvm-svn: 215753
Note: This reapplies r215582 without any modifications. The refactoring wasn't
responsible for the buildbot failures.
Original commit message:
Cleanup and prepare constant materialization code for future commits.
llvm-svn: 215752
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
Certain functions such as objc_autoreleaseReturnValue have to be called as
tail-calls even at -O0. Since normal fast-isel doesn't emit calls as tail calls,
we have to fall back to SelectionDAG to select calls that are marked as tail.
<rdar://problem/17991614>
llvm-svn: 215600
FastISel didn't take much advantage of the different addressing modes available
to it on AArch64. This commit allows the ComputeAddress method to recognize more
addressing modes that allows shifts and sign-/zero-extensions to be folded into
the memory operation itself.
For Example:
lsl x1, x1, #3 --> ldr x0, [x0, x1, lsl #3]
ldr x0, [x0, x1]
sxtw x1, w1
lsl x1, x1, #3 --> ldr x0, [x0, x1, sxtw #3]
ldr x0, [x0, x1]
llvm-svn: 215597
This change materializes now the value "0" from the zero register.
The zero register can be folded by several instruction, so no
materialization is need at all.
Fixes <rdar://problem/17924413>.
llvm-svn: 215591
This is a cleaner solution to the problem described in r215431.
When instructions are combined a dangling DBG_VALUE is removed.
This resolves bug 20598.
llvm-svn: 215587
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
The combiner ignored DBG nodes when checking
the uses of a virtual register.
It combined a sequence like
%vreg1 = madd %vreg2, %vreg3,...
DBG_VALUE (%vreg1 ...)
%vreg4 = add %vreg1,...
to
%vreg4 = madd %vreg2, %vreg3
leaving behind a dangling DBG_VALUE with
a definition. This triggered an assertion
in the MachineTraceMetrics.cpp module.
llvm-svn: 215431
std::map invalidates the iterator to any element that gets deleted, which means
we can't increment it correctly afterwards. This was causing Darwin test
failures.
llvm-svn: 215233
For best-case performance on Cortex-A57, we should try to use a balanced mix of odd and even D-registers when performing a critical sequence of independent, non-quadword FP/ASIMD floating-point multiply or multiply-accumulate operations.
This pass attempts to detect situations where the register allocation may adversely affect this load balancing and to change the registers used so as to better utilize the CPU.
Ideally we'd just take each multiply or multiply-accumulate in turn and allocate it alternating even or odd registers. However, multiply-accumulates are most efficiently performed in the same functional unit as their accumulation operand. Therefore this pass tries to find maximal sequences ("Chains") of multiply-accumulates linked via their accumulation operand, and assign them all the same "color" (oddness/evenness).
This optimization affects S-register and D-register floating point multiplies and FMADD/FMAs, as well as vector (floating point only) muls and FMADD/FMA. Q register instructions (and 128-bit vector instructions) are not affected.
llvm-svn: 215199
This short-circuited our error reporting for incorrectly specified
target triples (you'd get AArch64 code instead).
Should fix PR20567.
llvm-svn: 215191
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
Re-commit of r214832,r21469 with a work-around that
avoids the previous problem with gcc build compilers
The work-around is to use SmallVector instead of ArrayRef
of basic blocks in preservesResourceLen()/MachineCombiner.cpp
llvm-svn: 215151
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
For triple aarch64-linux-gnu we were incorrectly setting IRIX.
For triple aarch64 we are correctly setting SYSV.
Patch by Ana Pazos <apazos@codeaurora.org>.
llvm-svn: 214974
Specifically Cortex-A57. This probably applies to Cyclone too but I haven't enabled it for that as I can't test it.
This gives ~4% improvement on SPEC 174.vpr, and ~1% in 471.omnetpp.
llvm-svn: 214957
Instruction prefetch is not implemented for AArch64, it is incorrectly
translated into data prefetch instruction.
Differential Revision: http://reviews.llvm.org/D4777
llvm-svn: 214860
Some types, such as 128-bit vector types on AArch64, don't have any callee-saved registers. So if a value needs to stay live over a callsite, it must be spilled and refilled. This cost is now taken into account.
llvm-svn: 214859
The original code would fail for unsupported value types like i1, i8, and i16.
This fix changes the code to only create a sub-register copy for i64 value types
and all other types (i1/i8/i16/i32) just use the source register without any
modifications.
getRegClassFor() is now guarded by the i64 value type check, that guarantees
that we always request a register for a valid value type.
llvm-svn: 214848
This implements basic argument lowering for AArch64 in FastISel. It only
handles a small subset of the C calling convention. It supports simple
arguments that can be passed in GPR and FPR registers.
This should cover most of the trivial cases without falling back to
SelectionDAG.
This fixes <rdar://problem/17890986>.
llvm-svn: 214846
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
sequence on AArch64
Re-commit of r214669 without changes to test cases
LLVM::CodeGen/AArch64/arm64-neon-mul-div.ll and
LLVM:: CodeGen/AArch64/dp-3source.ll
This resolves the reported compfails of the original commit.
llvm-svn: 214832
This fix changes the parameters #r and #s that are passed to the UBFM/SBFM
instruction to get the zero/sign-extension for free.
The original problem was that the shift left would use the 32-bit shift even for
i8/i16 value types, which could leave the upper bits set with "garbage" values.
The arithmetic shift right on the other side would use the wrong MSB as sign-bit
to determine what bits to shift into the value.
This fixes <rdar://problem/17907720>.
llvm-svn: 214788
scalar integer instruction pass.
This is a patch I had lying around from a few months ago. The pass is
currently disabled by default, so nothing to interesting.
llvm-svn: 214779
sequence - AArch64 target support
This patch turns off madd/msub generation in the DAGCombiner and generates
them in the MachineCombiner instead. It replaces the original code sequence
with the combined sequence when it is beneficial to do so.
When there is no machine model support it always generates the madd/msub
instruction. This is true also when the objective is to optimize for code
size: when the combined sequence is shorter is always chosen and does not
get evaluated.
When there is a machine model the combined instruction sequence
is evaluated for critical path and resource length using machine
trace metrics and the original code sequence is replaced when it is
determined to be faster.
rdar://16319955
llvm-svn: 214669
Add branch weights to branch instructions, so that the following passes can
optimize based on it (i.e. basic block ordering).
Fixes <rdar://problem/17887137>.
llvm-svn: 214537
The tbz/tbnz checks the sign bit to convert
op w1, w1, w10
cmp w1, #0
b.lt .LBB0_0
to
op w1, w1, w10
tbnz w1, #31, .LBB0_0
Differential Revision: http://reviews.llvm.org/D4440
llvm-svn: 214518
ADDS and SUBS cannot encode negative immediates or immediates larger than 12bit.
This fix checks if the immediate version can be used under this constraints and
if we can convert ADDS to SUBS or vice versa to support negative immediates.
Also update the test cases to test the immediate versions.
llvm-svn: 214470
Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.
This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.
llvm-svn: 214449
Currently the large code model for MachO uses the GOT to make function calls.
Emit the required adrp and ldr instructions to load the address from the GOT.
Related to <rdar://problem/17733076>.
llvm-svn: 214381
UNDEF arguments are not ment to be touched - especially for the webkit_js
calling convention. This fix reproduces the already existing behavior of
SelectionDAG in FastISel.
llvm-svn: 214366
This improves the code generation for the XALU intrinsics when the
condition is feeding a select instruction.
This also updates and enables the XALU unit tests for FastISel.
This fixes <rdar://problem/17831117>.
llvm-svn: 214350
This improves the code generation for the XALU intrinsics when the
condition is feeding a branch instruction.
This is related to <rdar://problem/17831117>.
llvm-svn: 214349
This commit adds support for the {s|u}{add|sub|mul}.with.overflow intrinsics.
The unit tests for FastISel will be enabled in a later commit, once there is
also branch and select folding support.
This is related to <rdar://problem/17831117>.
llvm-svn: 214348
Currently the shift-immediate versions are not supported by tblgen and
hopefully this can be later removed, once the required support has been
added to tblgen.
llvm-svn: 214345
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
llvm-svn: 214055
'J' represents a negative number suitable for an add/sub alias
instruction, but while preparing it to become an int64_t we were
mangling the sign extension. So "i32 -1" became 0xffffffffLL, for
example.
Should fix one half of PR20456.
llvm-svn: 214052
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
This commit implements the frameaddress intrinsic for the AArch64 architecture
in FastISel.
There were two test cases that pretty much tested the same, so I combined them
to a single test case.
Fixes <rdar://problem/17811834>
llvm-svn: 213959
Quite a bit of cruft had accumulated as we realised the various different cases
it had to handle and squeezed them in where possible. This refactoring mostly
flattens the logic and special-cases. The result is slightly longer, but I
think clearer.
Should be no functionality change.
llvm-svn: 213867
This bug is introduced by r211144. The element of operand may be
smaller than the element of result, but previous commit can
only handle the contrary condition. This commit is to handle this
scenario and generate optimized codes like ZIP1.
llvm-svn: 213830
There were still some disassembler bits in lib/MC, but their use of Object
was only visible in the includes they used, not in the symbols.
llvm-svn: 213808
The transform to constant fold unary operations with an AND across a
vector comparison applies when the constant is not a splat of a scalar
as well.
llvm-svn: 213800
The folding of unary operations through a vector compare and mask operation
is only safe if the unary operation result is of the same size as its input.
For example, it's not safe for [su]itofp from v4i32 to v4f64.
llvm-svn: 213799
I used the wrong method to obtain the return type inside FinishCall. This fix
simply uses the return type from FastLowerCall, which we already determined to
be a valid type.
Reduced test case from Chad. Thanks.
llvm-svn: 213788
The target-independent DAGcombiner will generate:
asr w1, X, #31 w1 = splat sign bit.
add X, X, w1, lsr #28 X = X + 0 or pow2-1
asr w0, X, asr #4 w0 = X/pow2
However, the add + shifts is expensive, so generate:
add w0, X, 15 w0 = X + pow2-1
cmp X, wzr X - 0
csel X, w0, X, lt X = (X < 0) ? X + pow2-1 : X;
asr w0, X, asr 4 w0 = X/pow2
llvm-svn: 213758
There really is no arm64_be: it was a useful fiction to test big-endian support
while both backends existed in parallel, but now the only platform that uses
the name (iOS) doesn't have a big-endian variant, let alone one called
"arm64_be".
llvm-svn: 213748
Having both Triple::arm64 and Triple::aarch64 is extremely confusing, and
invites bugs where only one is checked. In reality, the only legitimate
difference between the two (arm64 usually means iOS) is also present in the OS
part of the triple and that's what should be checked.
We still parse the "arm64" triple, just canonicalise it to Triple::aarch64, so
there aren't any LLVM-side test changes.
llvm-svn: 213743
This commit modifies the existing call lowering functions to be used as the
FastLowerCall and FastLowerIntrinsicCall target-hooks instead.
This enables patchpoint intrinsic lowering for AArch64.
This fixes <rdar://problem/17733076>
llvm-svn: 213704
This makes the first stage DAG for @llvm.convert.to.fp16 an fptrunc,
and correspondingly @llvm.convert.from.fp16 an fpext. The legalisation
path is now uniform, regardless of the input IR:
fptrunc -> FP_TO_FP16 (if f16 illegal) -> libcall
fpext -> FP16_TO_FP (if f16 illegal) -> libcall
Each target should be able to select the version that best matches its
operations and not be required to duplicate patterns for both fptrunc
and FP_TO_FP16 (for example).
As a result we can remove some redundant AArch64 patterns.
llvm-svn: 213507
On AArch64 the pseudo instruction ldr <reg>, =... supports both
32-bit and 64-bit constants. Add support for 64 bit constants for
the pools to support the pseudo instruction fully.
Changes the AArch64 ldr-pseudo tests to use 32-bit registers and
adds tests with 64-bit registers.
Patch by Janne Grunau!
Differential Revision: http://reviews.llvm.org/D4279
llvm-svn: 213387
Because i16 is illegal, there's no native DAG method to
represent a bitcast to or from an f16 type. This meant LLVM was
inserting a stack store/load pair which is really not ideal.
llvm-svn: 213378
Since the result of a SETCC for AArch64 is 0 or -1 in each lane, we can
move unary operations, in this case [su]int_to_fp through the mask
operation and constant fold the operation away. Generally speaking:
UNARYOP(AND(VECTOR_CMP(x,y), constant))
--> AND(VECTOR_CMP(x,y), constant2)
where constant2 is UNARYOP(constant).
This implements the transform where UNARYOP is [su]int_to_fp.
For example, consider the simple function:
define <4 x float> @foo(<4 x float> %val, <4 x float> %test) nounwind {
%cmp = fcmp oeq <4 x float> %val, %test
%ext = zext <4 x i1> %cmp to <4 x i32>
%result = sitofp <4 x i32> %ext to <4 x float>
ret <4 x float> %result
}
Before this change, the code is generated as:
fcmeq.4s v0, v0, v1
movi.4s v1, #0x1 // Integer splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
scvtf.4s v0, v0 // Convert each lane to f32.
ret
After, the code is improved to:
fcmeq.4s v0, v0, v1
fmov.4s v1, #1.00000000 // f32 splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
ret
The svvtf.4s has been constant folded away and the floating point 1.0f
vector lanes are materialized directly via fmov.4s.
Rather than do the folding manually in the target code, teach getNode()
in the generic SelectionDAG to handle folding constant operands of
vector [su]int_to_fp nodes. It is reasonable (as noted in a FIXME) to do
additional constant folding there as well, but I don't have test cases
for those operations, so leaving them for another time when it becomes
appropriate.
rdar://17693791
llvm-svn: 213341
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
llvm-svn: 213248
Memory barrier __builtin_arm_[dmb, dsb, isb] intrinsics are required to
implement their corresponding ACLE and MSVC intrinsics.
This patch ports ARM dmb, dsb, isb intrinsic to AArch64.
Differential Revision: http://reviews.llvm.org/D4520
llvm-svn: 213247
This adds a llvm.aarch64.hint intrinsic to mirror the llvm.arm.hint in order to
support the various hint intrinsic functions in the ACLE.
Add an optional pattern field that permits the subclass to specify the pattern
that matches the selection. The intrinsic pattern is set as mayLoad, mayStore,
so overload the value for the definition of the hint instruction.
llvm-svn: 212883
This patch teaches the AsmParser to accept some logical+immediate
instructions and convert them as shown:
bic Rd, Rn, #imm -> and Rd, Rn, #~imm
bics Rd, Rn, #imm -> ands Rd, Rn, #~imm
orn Rd, Rn, #imm -> orr Rd, Rn, #~imm
eon Rd, Rn, #imm -> eor Rd, Rn, #~imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers. For example, the bic construct is used by the linux kernel.
llvm-svn: 212722
Storing will generally be immediately preceded by rounding from an f32
or f64, so make sure to match those patterns directly to convert into the
FPR16 register class directly rather than going through the integer GPRs.
This also eliminates an extra step in the convert-from-f64 path
which was first converting to f32 and then to f16 from there.
rdar://17594379
llvm-svn: 212638
This is a follow up to r212492. There should be no functional difference, but
this patch makes it clear that SrcVT must be an i1/i8/16/i32 and DestVT must be
an i8/i16/i32/i64.
rdar://17516686
llvm-svn: 212633
Loading will generally extend to an f32 or an 64, so make sure
to match those patterns directly to load into the FPR16 register
class directly rather than going through the integer GPRs.
This also eliminates an extra step in the convert-to-f64 path
which was first converting to f32 and then to f64 from there.
rdar://17594379
llvm-svn: 212573
Currently AArch64FastISel crashes if it tries to extend an integer into an
MVT::i128. This can happen by creating 128 bit integers like so:
typedef unsigned int uint128_t __attribute__((mode(TI)));
typedef int sint128_t __attribute__((mode(TI)));
This patch makes EmitIntExt check for their presence and then falls back to
SelectionDAG.
Tests included.
rdar://17516686
llvm-svn: 212492
vector type legalization strategies in a more fine grained manner, and
change the legalization of several v1iN types and v1f32 to be widening
rather than scalarization on AArch64.
This fixes an assertion failure caused by scalarizing nodes like "v1i32
trunc v1i64". As v1i64 is legal it will fail to scalarize v1i32.
This also provides a foundation for other targets to have more granular
control over how vector types are legalized.
Patch by Hao Liu, reviewed by Tim Northover. I'm committing it to allow
some work to start taking place on top of this patch as it adds some
really important hooks to the backend that I'd like to immediately start
using. =]
http://reviews.llvm.org/D4322
llvm-svn: 212242
This reverts commits r212189 and r212190.
While this pass was accidentally disabled (until r212073), r205437
slipped in a use of `auto` that should have been `auto&`.
This fixes PR20188.
llvm-svn: 212201
Based on the support for .req on ARM. The aarch64 variant has to keep track if
the alias register was a vector register (v0-31) or a general purpose or
VFP/Advanced SIMD ([bhsdq]0-31) register.
Patch by Janne Grunau!
llvm-svn: 212161
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
llvm-svn: 212135
In r212073 I missed a call of `use_begin()` that assumed the wrong
semantics. It's not clear to me at all what this code does without the
fix, so I'm not sure how to write a testcase.
llvm-svn: 212075
AArch64AddressTypePromotion was doing nothing because it was using the
old semantics of `Use` and `uses()`, when it really wanted to get at the
`users()`.
llvm-svn: 212073
This patch is based on the changes from ARM target [1,2]
Based on ARM doc [3], if the literal value can be loaded with a valid MOV,
it can emit that instruction. This is implemented in this patch.
[1] Fix PR18345: ldr= pseudo instruction produces incorrect code when using in inline assembly
Author: David Peixotto <dpeixott@codeaurora.org>
commit b92cca222898d87bbc764fa22e805adb04ef7f13 (r200777)
[2] Implement the ldr-pseudo opcode for ARM assembly
Author: David Peixotto <dpeixott@codeaurora.org>
commit 0fa193b08627927ccaa0804a34d80480894614b8 (r197708)
[3] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802a/CJAHAIBC.html
Differential Revision: http://reviews.llvm.org/D4163
llvm-svn: 211533
ReconstructShuffle() may wrongly creat a CONCAT_VECTOR trying to
concat 2 of v2i32 into v4i16. This commit is to fix this issue and
try to generate UZP1 instead of lots of MOV and INS.
Patch is initalized by Kevin Qin, and refactored by Tim Northover.
llvm-svn: 211144
To make sure branches are in range, we need to do a better job of estimating
the length of an inline assembly block than "it's probably 1 instruction, who'd
write asm with more than that?".
Fortunately there's already a (highly suspect, see how many ways you can think
of to break it!) callback for this purpose, which is used by the other targets.
rdar://problem/17277590
llvm-svn: 211095
There's probably no acatual change in behaviour here, just updating
the LowerFP_TO_INT function to be more similar to the reverse
implementation and updating costs to current CodeGen.
llvm-svn: 210985
inverted condition codes (CINC, CINV, CNEG, CSET, and CSETM).
Matching aliases based on "immediate classes", when disassembling,
wasn't previously supported, hence adding MCOperandPredicate
into class Operand, and implementing the support for it
in AsmWriterEmitter.
The parsing for those aliases was already custom, so just adding
the missing condition into AArch64AsmParser::parseCondCode.
llvm-svn: 210528