CFE produces it to indicate artificial locations.
c.f.: DWARF standard, Table 6.2:
line -- An unsigned integer indicating a source line number. Lines are numbered beginning at 1. The compiler may emit the value 0 in cases where an instruction cannot be attributed to any source line.
llvm-svn: 191471
The binutils assembler supports a mode called DOLLAR_DOT which treats
the dollar sign token as a reference to the current program counter if
the dollar sign doesn't precede a constant or identifier.
This commit adds a new MCAsmInfo flag stating whether or not a given
target supports this interpretation of the dollar sign token; by
default, this flag is not enabled.
Further, enable this flag for PPC. The system assembler for AIX and
binutils both support using the dollar sign in this manner.
This fixes PR17353.
llvm-svn: 191368
The size of common symbols is now tracked correctly, so they can be listed in the arange section without needing knowledge of other following symbols.
.comm (and .lcomm) do not indicate to the system assembler any particular section to use, so we have to treat them as having no section.
Test case update to account for this.
llvm-svn: 191210
This makes using array_pod_sort significantly safer. The implementation relies
on function pointer casting but that should be safe as we're dealing with void*
here.
llvm-svn: 191175
Clean up some simple code quality issues. Bring internal naming
conventions up to current standard, fix inconsistent formatting, and
tidy up a couple of odd contructs.
llvm-svn: 191117
Summary:
We indicate that the object files are safe by emitting a @feat.00
absolute address symbol. The address is presumably interpreted as a
bitfield of features that the compiler would like to enable. Bit 0 is
documented in the PE COFF spec to opt in to "registered SEH", which is
what /safeseh enables.
LLVM's object files are safe by default because LLVM doesn't know how to
produce SEH handlers.
Reviewers: Bigcheese
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1691
llvm-svn: 190898
In particular, this means we emit non-external symbols defined to
variables, such as aliases or absolute addresses.
This is needed to implement /safeseh, and it appears there was some
confusion about what symbols to emit previously.
llvm-svn: 190888
Summary:
The '?' flag uses the last section group if the last had a section
group. We treat combining an explicit section group and the '?' as a
hard error.
This fixes PR17198.
Reviewers: rafael, bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1686
llvm-svn: 190768
For alignment purposes, the instruction array will always have an even
number of entries, with the final entry potentially unused (in which
case the array will be one longer than indicated by the count of unwind
codes field).
Reviewed by Anton Korobeynikov, Charles Davis and Nico Rieck.
llvm-svn: 190767
data structures.
The Win64 EH data structures must be of type IMAGE_REL_AMD64_ADDR32NB
instead of IMAGE_REL_AMD64_ADDR32. This is easiely achieved by adding
the VK_COFF_IMGREL32 modifier to the symbol reference.
Change also references to start and end of the SEH range of a function
as offsets to start of the function.
Reviewed by Jim Grosbach, Charles Davis and Nico Rieck.
llvm-svn: 190766
There are more than one paths to where the frame information is emitted. Place
the call to generateCompactUnwindEncodings() into the method which outputs the
frame information, thus ensuring that the encoding is there for every path. This
involved threading the MCAsmBackend object through to this method.
<rdar://problem/13623355>
llvm-svn: 190335
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
llvm-svn: 190290
with a debug build) with this buggy .indirect_symbol directive usage:
% cat test.s
x: .indirect_symbol _y
The assertion is because it is trying to get the symbol index for the
symbol _y when it is writing out the indirect symbol table. This line of
code in MachObjectWriter::WriteObject() :
Write32(Asm.getSymbolData(*it->Symbol).getIndex());
And while there is a symbol _y it does not have any getSymbolData set which
is only done in MachObjectWriter::BindIndirectSymbols() for pointer sections
or stub sections. I added a check and an error in there to catch this in case
something slips through.
But to get a better error the parser should detect when a .indirect_symbol
directive is used and it is not in a pointer section or stub section. To make
that work I moved the handling of the indirect symbol out of the target
independent AsmParser code into the DarwinAsmParser code that can check
for the proper Mach-O section types.
rdar://14825505
llvm-svn: 189497
Right now we have two headers for the Mach-O format. I'd like to get rid
of one. Since the other object formats are all in Support, I chose to
keep the Mach-O header in Support, and discard the other one.
llvm-svn: 189314
The code offset for unwind code SET_FPREG is wrong because it is set
to constant 0. The fix is to do the same as for the other unwind
codes: emit a label and later the absolute difference between the
label and the begin of the prologue.
Also enables the failing test case MC/COFF/seh.s
Reviewed by Jim Grosbach, Charles Davis and Nico Rieck.
llvm-svn: 189309
Like yaml ObjectFiles, this will be very useful for testing the MC CFG
implementation (mostly MCObjectDisassembler), by matching the output
with YAML, and for potential users of the MC CFG, by using it as an input.
There isn't much to the actual format, it is just a serialization of the
MCModule class. Of note:
- Basic block references (pred/succ, ..) are represented by the BB's
start address.
- Just as in the MC CFG, instructions are MCInsts with a size.
- Operands have a prefix representing the type (only register and
immediate supported here).
- Instruction opcodes are represented by their names; enum values aren't
stable, enum names mostly are: usually, a change to a name would need
lots of changes in the backend anyway.
Same with registers.
All in all, an example is better than 1000 words, here goes:
A simple binary:
Disassembly of section __TEXT,__text:
_main:
100000f9c: 48 8b 46 08 movq 8(%rsi), %rax
100000fa0: 0f be 00 movsbl (%rax), %eax
100000fa3: 3b 04 25 48 00 00 00 cmpl 72, %eax
100000faa: 0f 8c 07 00 00 00 jl 7 <.Lend>
100000fb0: 2b 04 25 48 00 00 00 subl 72, %eax
.Lend:
100000fb7: c3 ret
And the (pretty verbose) generated YAML:
---
Atoms:
- StartAddress: 0x0000000100000F9C
Size: 20
Type: Text
Content:
- Inst: MOV64rm
Size: 4
Ops: [ RRAX, RRSI, I1, R, I8, R ]
- Inst: MOVSX32rm8
Size: 3
Ops: [ REAX, RRAX, I1, R, I0, R ]
- Inst: CMP32rm
Size: 7
Ops: [ REAX, R, I1, R, I72, R ]
- Inst: JL_4
Size: 6
Ops: [ I7 ]
- StartAddress: 0x0000000100000FB0
Size: 7
Type: Text
Content:
- Inst: SUB32rm
Size: 7
Ops: [ REAX, REAX, R, I1, R, I72, R ]
- StartAddress: 0x0000000100000FB7
Size: 1
Type: Text
Content:
- Inst: RET
Size: 1
Ops: [ ]
Functions:
- Name: __text
BasicBlocks:
- Address: 0x0000000100000F9C
Preds: [ ]
Succs: [ 0x0000000100000FB7, 0x0000000100000FB0 ]
<snip>
...
llvm-svn: 188890
Supports:
- entrypoint, using LC_MAIN.
- static ctors/dtors, using __mod_{init,exit}_func
- translation between effective and object load address, using
dyld's VM address slide.
llvm-svn: 188886
It can now disassemble code in situations where the effective load
address is different than the load address declared in the object file.
This happens for PIC, hence "dynamic".
llvm-svn: 188884