Commit Graph

31 Commits

Author SHA1 Message Date
Greg Clayton 7349bd9078 While implementing unwind information using UnwindAssemblyInstEmulation I ran
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:

virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);

virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);

There is now a new class specifically designed to hold register values: 
        lldb_private::RegisterValue
        
The new register context calls that subclasses must implement are:

virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue &reg_value) = 0;

virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue &reg_value) = 0;

The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the 
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..). 

All RegiterContext and other sources have been switched over to using the new
regiter value class.

llvm-svn: 131096
2011-05-09 20:18:18 +00:00
Greg Clayton 84c39663a9 Added a new OptionValue subclass for lldb::Format: OptionValueFormat. Added
new OptionGroup subclasses for:
- output file for use with options: 
        long opts: --outfile <path> --append--output
        short opts: -o <path> -A
        
- format for use with options:
        long opts: --format <format>

- variable object display controls for depth, pointer depth, wether to show
  types, show summary, show location, flat output, use objc "po" style summary.
  
Modified ValueObjectMemory to be able to be created either with a TypeSP or
a ClangASTType.

Switched "memory read" over to use OptionGroup subclasses: one for the outfile
options, one for the command specific options, and one for the format.

llvm-svn: 130334
2011-04-27 22:04:39 +00:00
Greg Clayton 2ed751bd47 Changed the emulate instruction function to take emulate options which
are defined as enumerations. Current bits include:

        eEmulateInstructionOptionAutoAdvancePC
        eEmulateInstructionOptionIgnoreConditions

Modified the EmulateInstruction class to have a few more pure virtuals that
can help clients understand how many instructions the emulator can handle:

        virtual bool
        SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0;


Where instruction types are defined as:

//------------------------------------------------------------------
/// Instruction types
//------------------------------------------------------------------    
typedef enum InstructionType
{
    eInstructionTypeAny,                // Support for any instructions at all (at least one)
    eInstructionTypePrologueEpilogue,   // All prologue and epilogue instructons that push and pop register values and modify sp/fp
    eInstructionTypePCModifying,        // Any instruction that modifies the program counter/instruction pointer
    eInstructionTypeAll                 // All instructions of any kind

}  InstructionType;


This allows use to tell what an emulator can do and also allows us to request
these abilities when we are finding the plug-in interface.

Added the ability for an EmulateInstruction class to get the register names
for any registers that are part of the emulation. This helps with being able
to dump and log effectively.

The UnwindAssembly class now stores the architecture it was created with in
case it is needed later in the unwinding process.

Added a function that can tell us DWARF register names for ARM that goes
along with the source/Utility/ARM_DWARF_Registers.h file: 

        source/Utility/ARM_DWARF_Registers.c
        
Took some of plug-ins out of the lldb_private namespace.

llvm-svn: 130189
2011-04-26 04:39:08 +00:00
Greg Clayton 7e14f91dbd Fixed the SymbolContext::DumpStopContext() to correctly indent and dump
inline contexts when the deepest most block is not inlined.

Added source path remappings to the lldb_private::Target class that allow it
to remap paths found in debug info so we can find source files that are elsewhere
on the current system.

Fixed disassembly by function name to disassemble inline functions that are
inside other functions much better and to show enough context before the
disassembly output so you can tell where things came from.

Added the ability to get more than one address range from a SymbolContext 
class for the case where a block or function has discontiguous address ranges.

llvm-svn: 130044
2011-04-23 02:04:55 +00:00
Caroline Tice de2fb9cf76 Change code for reading emulation data files to read the new file
format.  (The newly formatted files will go in as a separate commit in a
few minutes).

llvm-svn: 129981
2011-04-22 05:08:45 +00:00
Johnny Chen ea80ba8b97 Use self.TraceOn() API to decide whether to print debug output.
llvm-svn: 129935
2011-04-21 20:27:45 +00:00
Caroline Tice 3ac6711aec Add the infrastructure to test instruction emulations automatically.
The idea is that the instruction to be emulated is actually executed
on the hardware to be emulated, with the before and after state of the
hardware being captured and 'freeze-dried' into .dat files.  The
emulation testing code then loads the before & after state from the
.dat file, emulates the instruction using the before state, and
compares the resulting state to the 'after' state.  If they match, the
emulation is accurate, otherwise there is a problem.

The final format of the .dat files needs a bit more work; the plan is
to generalize them a bit and to convert the plain values to key-value pairs. 
But I wanted to get this first pass committed.

This commit adds arm instruction emulation testing to the testsuite, along with
many initial .dat files.

It also fixes a bug in the llvm disassembler, where 32-bit thumb opcodes
were getting their upper & lower 16-bits reversed.

There is a new Instruction sub-class, that is intended to be loaded
from a .dat file rather than read from an executable.  There is also a
new EmulationStateARM class, for handling the before & after states.
EmulationStates for other architetures can be added later when we
emulate their instructions.

llvm-svn: 129832
2011-04-19 23:30:03 +00:00
Caroline Tice 25d61ac2ed Fix various things in the instruction emulation code:
- Add ability to control whether or not the emulator advances the
    PC register (in the emulation state), if the instruction itself
    does not change the pc value..

    - Fix a few typos in asm description strings.

    - Fix bug in the carry flag calculation.

llvm-svn: 129168
2011-04-08 23:33:06 +00:00
Caroline Tice 7c9dd3ce3c Add Emulate and DumpEmulation to Instruction class.
Move InstructionLLVM out of DisassemblerLLVM class.

Add instruction emulation function calls to SBInstruction and SBInstructionList APIs.

llvm-svn: 128956
2011-04-05 23:22:54 +00:00
Caroline Tice ad379efc86 Add the rest of the mechanisms to make ARM instruction emulation usable/possible.
llvm-svn: 128907
2011-04-05 18:46:00 +00:00
Greg Clayton 32e0a7509c Many improvements to the Platform base class and subclasses. The base Platform
class now implements the Host functionality for a lot of things that make 
sense by default so that subclasses can check:

int
PlatformSubclass::Foo ()
{
    if (IsHost())
        return Platform::Foo (); // Let the platform base class do the host specific stuff
    
    // Platform subclass specific code...
    int result = ...
    return result;
}

Added new functions to the platform:

    virtual const char *Platform::GetUserName (uint32_t uid);
    virtual const char *Platform::GetGroupName (uint32_t gid);

The user and group names are cached locally so that remote platforms can avoid
sending packets multiple times to resolve this information.

Added the parent process ID to the ProcessInfo class. 

Added a new ProcessInfoMatch class which helps us to match processes up
and changed the Host layer over to using this new class. The new class allows
us to search for processs:
1 - by name (equal to, starts with, ends with, contains, and regex)
2 - by pid
3 - And further check for parent pid == value, uid == value, gid == value, 
    euid == value, egid == value, arch == value, parent == value.
    
This is all hookup up to the "platform process list" command which required
adding dumping routines to dump process information. If the Host class 
implements the process lookup routines, you can now lists processes on 
your local machine:

machine1.foo.com % lldb
(lldb) platform process list 
PID    PARENT USER       GROUP      EFF USER   EFF GROUP  TRIPLE                   NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99538  1      username   usergroup  username   usergroup  x86_64-apple-darwin      FileMerge
94943  1      username   usergroup  username   usergroup  x86_64-apple-darwin      mdworker
94852  244    username   usergroup  username   usergroup  x86_64-apple-darwin      Safari
94727  244    username   usergroup  username   usergroup  x86_64-apple-darwin      Xcode
92742  92710  username   usergroup  username   usergroup  i386-apple-darwin        debugserver


This of course also works remotely with the lldb-platform:

machine1.foo.com % lldb-platform --listen 1234

machine2.foo.com % lldb
(lldb) platform create remote-macosx
  Platform: remote-macosx
 Connected: no
(lldb) platform connect connect://localhost:1444
  Platform: remote-macosx
    Triple: x86_64-apple-darwin
OS Version: 10.6.7 (10J869)
    Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386
  Hostname: machine1.foo.com
 Connected: yes
(lldb) platform process list 
PID    PARENT USER       GROUP      EFF USER   EFF GROUP  TRIPLE                   NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99556  244    username   usergroup  username   usergroup  x86_64-apple-darwin      trustevaluation
99548  65539  username   usergroup  username   usergroup  x86_64-apple-darwin      lldb
99538  1      username   usergroup  username   usergroup  x86_64-apple-darwin      FileMerge
94943  1      username   usergroup  username   usergroup  x86_64-apple-darwin      mdworker
94852  244    username   usergroup  username   usergroup  x86_64-apple-darwin      Safari

The lldb-platform implements everything with the Host:: layer, so this should
"just work" for linux. I will probably be adding more stuff to the Host layer
for launching processes and attaching to processes so that this support should
eventually just work as well.

Modified the target to be able to be created with an architecture that differs
from the main executable. This is needed for iOS debugging since we can have
an "armv6" binary which can run on an "armv7" machine, so we want to be able
to do:

% lldb
(lldb) platform create remote-ios
(lldb) file --arch armv7 a.out

Where "a.out" is an armv6 executable. The platform then can correctly decide
to open all "armv7" images for all dependent shared libraries.

Modified the disassembly to show the current PC value. Example output:

(lldb) disassemble --frame
a.out`main:
   0x1eb7:  pushl  %ebp
   0x1eb8:  movl   %esp, %ebp
   0x1eba:  pushl  %ebx
   0x1ebb:  subl   $20, %esp
   0x1ebe:  calll  0x1ec3                   ; main + 12 at test.c:18
   0x1ec3:  popl   %ebx
-> 0x1ec4:  calll  0x1f12                   ; getpid
   0x1ec9:  movl   %eax, 4(%esp)
   0x1ecd:  leal   199(%ebx), %eax
   0x1ed3:  movl   %eax, (%esp)
   0x1ed6:  calll  0x1f18                   ; printf
   0x1edb:  leal   213(%ebx), %eax
   0x1ee1:  movl   %eax, (%esp)
   0x1ee4:  calll  0x1f1e                   ; puts
   0x1ee9:  calll  0x1f0c                   ; getchar
   0x1eee:  movl   $20, (%esp)
   0x1ef5:  calll  0x1e6a                   ; sleep_loop at test.c:6
   0x1efa:  movl   $12, %eax
   0x1eff:  addl   $20, %esp
   0x1f02:  popl   %ebx
   0x1f03:  leave
   0x1f04:  ret
   
This can be handy when dealing with the new --line options that was recently
added:

(lldb) disassemble --line
a.out`main + 13 at test.c:19
   18  	{
-> 19  		printf("Process: %i\n\n", getpid());
   20  	    puts("Press any key to continue..."); getchar();
-> 0x1ec4:  calll  0x1f12                   ; getpid
   0x1ec9:  movl   %eax, 4(%esp)
   0x1ecd:  leal   199(%ebx), %eax
   0x1ed3:  movl   %eax, (%esp)
   0x1ed6:  calll  0x1f18                   ; printf

Modified the ModuleList to have a lookup based solely on a UUID. Since the
UUID is typically the MD5 checksum of a binary image, there is no need
to give the path and architecture when searching for a pre-existing
image in an image list.

Now that we support remote debugging a bit better, our lldb_private::Module
needs to be able to track what the original path for file was as the platform
knows it, as well as where the file is locally. The module has the two 
following functions to retrieve both paths:

const FileSpec &Module::GetFileSpec () const;
const FileSpec &Module::GetPlatformFileSpec () const;

llvm-svn: 128563
2011-03-30 18:16:51 +00:00
Greg Clayton 357132eb9a Added the ability to get the min and max instruction byte size for
an architecture into ArchSpec:

uint32_t
ArchSpec::GetMinimumOpcodeByteSize() const;

uint32_t
ArchSpec::GetMaximumOpcodeByteSize() const;

Added an AddressClass to the Instruction class in Disassembler.h.
This allows decoded instructions to know know if they are code,
code with alternate ISA (thumb), or even data which can be mixed
into code. The instruction does have an address, but it is a good
idea to cache this value so we don't have to look it up more than 
once.

Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't
getting set.

Changed:

	bool
	SymbolContextList::AppendIfUnique (const SymbolContext& sc);

To:
	bool
	SymbolContextList::AppendIfUnique (const SymbolContext& sc, 
									   bool merge_symbol_into_function);

This function was typically being used when looking up functions
and symbols. Now if you lookup a function, then find the symbol,
they can be merged into the same symbol context and not cause
multiple symbol contexts to appear in a symbol context list that
describes the same function.

Fixed the SymbolContext not equal operator which was causing mixed
mode disassembly to not work ("disassembler --mixed --name main").

Modified the disassembler classes to know about the fact we know,
for a given architecture, what the min and max opcode byte sizes
are. The InstructionList class was modified to return the max
opcode byte size for all of the instructions in its list.
These two fixes means when disassemble a list of instructions and dump 
them and show the opcode bytes, we can format the output more 
intelligently when showing opcode bytes. This affects any architectures
that have varying opcode byte sizes (x86_64 and i386). Knowing the max
opcode byte size also helps us to be able to disassemble N instructions
without having to re-read data if we didn't read enough bytes.

Added the ability to set the architecture for the disassemble command.
This means you can easily cross disassemble data for any supported 
architecture. I also added the ability to specify "thumb" as an 
architecture so that we can force disassembly into thumb mode when
needed. In GDB this was done using a hack of specifying an odd
address when disassembling. I don't want to repeat this hack in LLDB,
so the auto detection between ARM and thumb is failing, just specify
thumb when disassembling:

(lldb) disassemble --arch thumb --name main

You can also have data in say an x86_64 file executable and disassemble
data as any other supported architecture:
% lldb a.out
Current executable set to 'a.out' (x86_64).
(lldb) b main
(lldb) run
(lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes
0x100001080:  0xb580 push   {r7, lr}
0x100001082:  0xaf00 add    r7, sp, #0

Fixed Target::ReadMemory(...) to be able to deal with Address argument object
that isn't section offset. When an address object was supplied that was
out on the heap or stack, target read memory would fail. Disassembly uses
Target::ReadMemory(...), and the example above where we disassembler thumb
opcodes in an x86 binary was failing do to this bug.

llvm-svn: 128347
2011-03-26 19:14:58 +00:00
Greg Clayton 1080edbcdd Cleaned up the Disassembler code a bit more. You can now request a disassembler
plugin by name on the command line for when there is more than one disassembler
plugin.

Taught the Opcode class to dump itself so that "disassembler -b" will dump
the bytes correctly for each opcode type. Modified all places that were passing
the opcode bytes buffer in so that the bytes could be displayed to just pass
in a bool that indicates if we should dump the opcode bytes since the opcode
now lives inside llvm_private::Instruction.

llvm-svn: 128290
2011-03-25 18:03:16 +00:00
Greg Clayton 0ae962735f Made the lldb_private::Opcode struct into a real boy... I mean class.
Modified the Disassembler::Instruction base class to contain an Opcode 
instance so that we can know the bytes for an instruction without needing
to keep the data around.

Modified the DisassemblerLLVM's instruction class to correctly extract the
opcode bytes if all goes well.

llvm-svn: 128248
2011-03-24 23:53:38 +00:00
Jim Ingham 37023b06bd Add the ability to disassemble "n" instructions from the current PC, or the first "n" instructions in a function.
Also added a "-p" flag that disassembles from the current pc.

llvm-svn: 128063
2011-03-22 01:48:42 +00:00
Sean Callanan b3396b226e Fixed the -r parameter to the disassemble command
so that it actually triggers raw output.

llvm-svn: 127433
2011-03-10 23:35:12 +00:00
Greg Clayton 64195a2c8b Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
  the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple 
  to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
  core we are dealing with into a single enumeration. If you need support for
  a new Core and want to debug it in LLDB, it must be added to this list. In
  the future we can allow for dynamic core registration, but for now it is
  hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
  that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
  with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
  then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
  The mach-o cpu type and subtype can be accessed using the getter functions:
  
  uint32_t
  ArchSpec::GetMachOCPUType () const;

  uint32_t
  ArchSpec::GetMachOCPUSubType () const;
  
  But these functions are just converting out internal llvm::Triple::ArchSpec 
  + ArchSpec::Core back into mach-o. Same goes for ELF.

All code has been updated to deal with the changes.

This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.

llvm-svn: 126278
2011-02-23 00:35:02 +00:00
Greg Clayton 514487e806 Made lldb_private::ArchSpec contain much more than just an architecture. It
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
  selection.

llvm-svn: 125602
2011-02-15 21:59:32 +00:00
Greg Clayton 931180e644 Changed the SymbolFile::FindFunction() function calls to only return
lldb_private::Function objects. Previously the SymbolFileSymtab subclass
would return lldb_private::Symbol objects when it was asked to find functions.

The Module::FindFunctions (...) now take a boolean "bool include_symbols" so
that the module can track down functions and symbols, yet functions are found
by the SymbolFile plug-ins (through the SymbolVendor class), and symbols are
gotten through the ObjectFile plug-ins.

Fixed and issue where the DWARF parser might run into incomplete class member
function defintions which would make clang mad when we tried to make certain
member functions with invalid number of parameters (such as an operator=
operator that had no parameters). Now we just avoid and don't complete these
incomplete functions.

llvm-svn: 124359
2011-01-27 06:44:37 +00:00
Greg Clayton db59823068 Added the ability for Target::ReadMemory to prefer to read from the file
cache even when a valid process exists. Previously, Target::ReadMemory would
read from the process if there was a valid one and then fallback to the
object file cache.

llvm-svn: 122989
2011-01-07 01:57:07 +00:00
Greg Clayton 1d27316606 Added the ability to get the disassembly instructions from the function and
symbol.

llvm-svn: 115734
2010-10-06 03:09:58 +00:00
Greg Clayton 6dbd39838d Fixed a missing newline when dumping mixed disassembly.
Added a "bool show_fullpaths" to many more objects that were
previously always dumping full paths.

Fixed a few places where the DWARF was not indexed when we
we needed it to be when making queries. Also fixed an issue
where the DWARF in .o files wasn't searching all .o files
for the types.

Fixed an issue with the output from "image lookup --type <TYPENAME>"
where the name and byte size might not be resolved and might not
display. We now call the accessors so we end up seeing all of the
type info.

llvm-svn: 113951
2010-09-15 05:51:24 +00:00
Greg Clayton f5e56de080 Moved the section load list up into the target so we can use the target
to symbolicate things without the need for a valid process subclass.

llvm-svn: 113895
2010-09-14 23:36:40 +00:00
Greg Clayton 3c68757c45 Fixed an error that could occur during disassembly that could cause a function name to be printed before the first _and_ the second instruction of disassembly when there are two symbols -- one debug symbol and one linker symbol.
llvm-svn: 113181
2010-09-06 23:11:45 +00:00
Greg Clayton 6dadd508e7 Added a new bool parameter to many of the DumpStopContext() methods that
might dump file paths that allows the dumping of full paths or just the
basenames. Switched the stack frame dumping code to use just the basenames for
the files instead of the full path.

Modified the StackID class to no rely on needing the start PC for the current
function/symbol since we can use the SymbolContextScope to uniquely identify
that, unless there is no symbol context scope. In that case we can rely upon
the current PC value. This saves the StackID from having to calculate the 
start PC when the StackFrame::GetStackID() accessor is called.

Also improved the StackID less than operator to correctly handle inlined stack
frames in the same stack.

llvm-svn: 112867
2010-09-02 21:44:10 +00:00
Greg Clayton 9da7bd0739 Got a lot of the kinks worked out in the inline support after debugging more
complex inlined examples.

StackFrame classes don't have a "GetPC" anymore, they have "GetFrameCodeAddress()".
This is because inlined frames will have a PC value that is the same as the 
concrete frame that owns the inlined frame, yet the code locations for the
frame can be different. We also need to be able to get the real PC value for
a given frame so that variables evaluate correctly. To get the actual PC
value for a frame you can use:

    addr_t pc = frame->GetRegisterContext()->GetPC();

Some issues with the StackFrame stomping on its own symbol context were 
resolved which were causing the information to change for a frame when the
stack ID was calculated. Also the StackFrame will now correctly store the
symbol context resolve flags for any extra bits of information that were 
looked up (if you ask for a block only and you find one, you will alwasy have
the compile unit and function).

llvm-svn: 111964
2010-08-24 21:05:24 +00:00
Greg Clayton 1b72fcb7d1 Added support for inlined stack frames being represented as real stack frames
which is now on by default. Frames are gotten from the unwinder as concrete
frames, then if inline frames are to be shown, extra information to track
and reconstruct these frames is cached with each Thread and exanded as needed.

I added an inline height as part of the lldb_private::StackID class, the class
that helps us uniquely identify stack frames. This allows for two frames to
shared the same call frame address, yet differ only in inline height.

Fixed setting breakpoint by address to not require addresses to resolve.

A quick example:

% cat main.cpp

% ./build/Debug/lldb test/stl/a.out 
Current executable set to 'test/stl/a.out' (x86_64).
(lldb) breakpoint set --address 0x0000000100000d31
Breakpoint created: 1: address = 0x0000000100000d31, locations = 1
(lldb) r
Launching 'a.out'  (x86_64)
(lldb) Process 38031 Stopped
* thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread
 277   	
 278   	      _CharT*
 279   	      _M_data() const
 280 ->	      { return  _M_dataplus._M_p; }
 281   	
 282   	      _CharT*
 283   	      _M_data(_CharT* __p)
(lldb) bt
thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread
  frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280
  frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288
  frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606
  frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414
  frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14
  frame #5: pc = 0x0000000100000d08, where = a.out`start + 52

Each inline frame contains only the variables that they contain and each inlined
stack frame is treated as a single entity.

llvm-svn: 111877
2010-08-24 00:45:41 +00:00
Sean Callanan 8ade104a0a Changed SymbolContext so when you search for functions
it returns a list of functions as a SymbolContextList.

Rewrote the clients of SymbolContext to use this
SymbolContextList.

Rewrote some of the providers of the data to SymbolContext
to make them respect preferences as to whether the list
should be cleared first; propagated that change out.

ClangExpressionDeclMap and ClangASTSource use this new
function list to properly generate function definitions -
even for functions that don't have a prototype in the
debug information.

llvm-svn: 109476
2010-07-27 00:55:47 +00:00
Greg Clayton dda4f7b520 Centralized all disassembly into static functions in source/Core/Disassembler.cpp.
Added the ability to read memory from the target's object files when we aren't
running, so disassembling works before you run!

Cleaned up the API to lldb_private::Target::ReadMemory().

Cleaned up the API to the Disassembler to use actual "lldb_private::Address"
objects instead of just an "addr_t". This is nice because the Address objects
when resolved carry along their section and module which can get us the 
object file. This allows Target::ReadMemory to be used when we are not 
running.

Added a new lldb_private::Address dump style: DumpStyleDetailedSymbolContext
This will show a full breakdown of what an address points to. To see some
sample output, execute a "image lookup --address <addr>".

Fixed SymbolContext::DumpStopContext(...) to not require a live process in
order to be able to print function and symbol offsets.

llvm-svn: 107350
2010-06-30 23:03:03 +00:00
Greg Clayton 6611103cfe Very large changes that were needed in order to allow multiple connections
to the debugger from GUI windows. Previously there was one global debugger
instance that could be accessed that had its own command interpreter and
current state (current target/process/thread/frame). When a GUI debugger
was attached, if it opened more than one window that each had a console
window, there were issues where the last one to setup the global debugger
object won and got control of the debugger.

To avoid this we now create instances of the lldb_private::Debugger that each 
has its own state:
- target list for targets the debugger instance owns
- current process/thread/frame
- its own command interpreter
- its own input, output and error file handles to avoid conflicts
- its own input reader stack

So now clients should call:

    SBDebugger::Initialize(); // (static function)

    SBDebugger debugger (SBDebugger::Create());
    // Use which ever file handles you wish
    debugger.SetErrorFileHandle (stderr, false);
    debugger.SetOutputFileHandle (stdout, false);
    debugger.SetInputFileHandle (stdin, true);

    // main loop
    
    SBDebugger::Terminate(); // (static function)
    
SBDebugger::Initialize() and SBDebugger::Terminate() are ref counted to
ensure nothing gets destroyed too early when multiple clients might be
attached.

Cleaned up the command interpreter and the CommandObject and all subclasses
to take more appropriate arguments.

llvm-svn: 106615
2010-06-23 01:19:29 +00:00
Chris Lattner 30fdc8d841 Initial checkin of lldb code from internal Apple repo.
llvm-svn: 105619
2010-06-08 16:52:24 +00:00