concerning qualified declarator-ids. We now diagnose extraneous
qualification at namespace scope (which we had previously missed) and
diagnose these qualification errors for all kinds of declarations; it
was rather uneven before. Fixes <rdar://problem/11135644>.
llvm-svn: 153577
search for the specialization (in a folding set) and, if not found
form a *Decl that is then inserted into that folding set. In rare
cases, the folding set may be reallocated between the search and the
insertion, causing a crash. No test case, because triggering rehashing
consistently in a small test case is not feasible. Fixes
<rdar://problem/11115071>.
llvm-svn: 153575
blocks in the function cloner. This removes the last case of trivially
dead code that I've been seeing in the wild getting inlined, analyzed,
re-inlined, optimized, only to be deleted. Nukes a FIXME from the
cleanup tests.
llvm-svn: 153572
with recent Clang. Clang is now stricter about
presence of complete types and about use of the
"template" keyword in C++ for template-dependent
types.
llvm-svn: 153563
that libclang creates.
-Introduce CXGlobalOptFlags enum for the new options that can be
set on the CXIndex object.
-CXGlobalOpt_ThreadBackgroundPriorityForIndexing affects:
clang_indexSourceFile
clang_indexTranslationUnit
clang_parseTranslationUnit
clang_saveTranslationUnit
-CXGlobalOpt_ThreadBackgroundPriorityForEditing affects:
clang_reparseTranslationUnit
clang_codeCompleteAt
clang_annotateTokens
rdar://9075282
llvm-svn: 153562
them as machine instructions. Directives ".set noat" and ".set at" are now
emitted only at the beginning and end of a function except in the case where
they are emitted to enclose .cpload with an immediate operand that doesn't fit
in 16-bit field or unaligned load/stores.
Also, make the following changes:
- Remove function isUnalignedLoadStore and use a switch-case statement to
determine whether an instruction is an unaligned load or store.
- Define helper function CreateMCInst which generates an instance of an MCInst
from an opcode and a list of operands.
llvm-svn: 153552
flag as GCC uses: -fstrict-enums). There is a *lot* of code making
unwarranted assumptions about the underlying type of enums, and it
doesn't seem entirely reasonable to eagerly break all of it.
Much more importantly, the current state of affairs is *very* good at
optimizing based upon this information, which causes failures that are
very distant from the actual enum. Before we push for enabling this by
default, I think we need to implement -fcatch-undefined-behavior support
for instrumenting and trapping whenever we store or load a value outside
of the range. That way we can track down the misbehaving code very
quickly.
I discussed this with Rafael, and currently the only important cases he
is aware of are the bool range-based optimizations which are staying
hard enabled. We've not seen any issue with those either, and they are
much more important for performance.
llvm-svn: 153550
completion item. For example, if the code completion itself represents
a declaration in a namespace (say, std::vector), then this API
retrieves the cursor kind and name of the namespace (std). Implements
<rdar://problem/11121951>.
llvm-svn: 153545
executable has been moved to another machine). If that's not available
(read-only or something), then exit gracefully.
<rdar://problem/11111686>
llvm-svn: 153538
indicates that the section is thread specific. Any functions the load a module
given a slide, will currently ignore any sections that are thread specific.
lldb_private::Section now has:
bool
Section::IsThreadSpecific () const
{
return m_thread_specific;
}
void
Section::SetIsThreadSpecific (bool b)
{
m_thread_specific = b;
}
The ELF plug-in has been modified to set this for the ".tdata" and the ".tbss"
sections.
Eventually we need to have each lldb_private::Thread subclass be able to
resolve a thread specific section, but for now they will just not resolve. The
code for that should be trivual to add, but the address resolving functions
will need to be changed to take a "ExecutionContext" object instead of just
a target so that thread specific sections can be resolved.
llvm-svn: 153537
The analyzer gives up path exploration under certain conditions. For
example, when the same basic block has been visited more than 4 times.
With inlining turned on, this could lead to decrease in code coverage.
Specifically, if we give up inside the inlined function, the rest of
parent's basic blocks will not get analyzed.
This commit introduces an option to enable re-run along the failed path,
in which we do not inline the last inlined call site. This is done by
enqueueing the node before the processing of the inlined call site
with a special policy encoded in the state. The policy tells us not to
inline the call site along the path.
This lead to ~10% increase in the number of paths analyzed. Even though
we expected a much greater coverage improvement.
The option is turned off by default for now.
llvm-svn: 153534
Report root function name with exhausted block diagnostic.
Also, use stack frames, not just any location context when checking if
the basic block is in the same context.
llvm-svn: 153532