This method parses an operation in its generic form, from the current parser
state. This is the symmetric of OpAsmPrinter::printGenericOp(). An immediate
use case is illustrated in the test dialect, where an operation wraps another
one in its region and makes use of a single-line pretty-print form.
PiperOrigin-RevId: 267930869
This is done via a new set of instrumentation hooks runBeforePipeline/runAfterPipeline, that signal the lifetime of a pass pipeline on a specific operation type. These hooks also provide the parent thread of the pipeline, allowing for accurate merging of timers running on different threads.
PiperOrigin-RevId: 267909193
This is the only example for overriding this interface in the repo, let's
try to make it right as it may be taken as a reference when implemented in
other dialects
PiperOrigin-RevId: 267811123
This will allow clients to implement a different collection strategy on these
values, including collecting each uses within the region for example.
PiperOrigin-RevId: 267803978
- the JIT codegen was being run at the default -O0 level; instead,
propagate the opt level from the cmd line.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#123
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/123 from bondhugula:jit-runner 3b055e47f94c9a48bf487f6400787478738cda02
PiperOrigin-RevId: 267778586
This doc serves as a manual for table-driven declarative rewrite rules.
It lists all the details regarding supported mechanisms.
PiperOrigin-RevId: 267761702
The current restrictions on dim/symbols require a top-level symbol for the conservative case of a non-affine region. This should be relaxed in the future.
PiperOrigin-RevId: 267641838
View descriptors are converted to *pointer to* LLVM struct to avoid ABI issues related to C struct packing. This creates unnecessary complexity and hampers unification with memrefs.
Instead, this CL makes view descriptors convert to LLVM struct (as it was originally) and promotes all structs to pointers right before calling an external function.
PiperOrigin-RevId: 267602693
- turn canonicalizeMapAndOperands into a template that works on both
sets and maps, and use it to introduce a utility to canonicalize an
affine integer set and its operands
- add pattern to canonicalize affine if op's.
- rename IntegerSet::getNumOperands -> IntegerSet::getNumInputs to be
consistent with AffineMap
- add missing accessors for IntegerSet
Doesn't need extensive testing since canonicalizeSetAndOperands just
reuses canonicalizeMapAndOperands' logic, and the latter is tested on
affine.apply map + operands; the new method works the same way on an
integer set + operands of an affine if op for example.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#112
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/112 from bondhugula:set-canonicalize eff72f23250b96fa7d9f5caff3877440f5de2cec
PiperOrigin-RevId: 267532876
This commit defines an initial implementation of the DialectInlinerInterface for the AffineOps dialect. This change allows for affine operations to be inlined into any region that is not an affine region. Inlining into affine regions requires special handling for dimension/symbol identifiers that will be added in followups.
PiperOrigin-RevId: 267467078
SPIR-V can explicitly declare structured control-flow constructs using merge
instructions. These explicitly declare a header block before the control
flow diverges and a merge block where control flow subsequently converges.
These blocks delimit constructs that must nest, and can only be entered
and exited in structured ways.
Instead of having a `spv.LoopMerge` op to directly model loop merge
instruction for indicating the merge and continue target, we use regions
to delimit the boundary of the loop: the merge target is the next op
following the `spv.loop` op and the continue target is the block that
has a back-edge pointing to the entry block inside the `spv.loop`'s region.
This way it's easier to discover all blocks belonging to a construct and
it plays nicer with the MLIR system.
Updated the SPIR-V.md doc.
PiperOrigin-RevId: 267431010
This defines a set of initial utilities for inlining a region(or a FuncOp), and defines a simple inliner pass for testing purposes.
A new dialect interface is defined, DialectInlinerInterface, that allows for dialects to override hooks controlling inlining legality. The interface currently provides the following hooks, but these are just premilinary and should be changed/added to/modified as necessary:
* isLegalToInline
- Determine if a region can be inlined into one of this dialect, *or* if an operation of this dialect can be inlined into a given region.
* shouldAnalyzeRecursively
- Determine if an operation with regions should be analyzed recursively for legality. This allows for child operations to be closed off from the legality checks for operations like lambdas.
* handleTerminator
- Process a terminator that has been inlined.
This cl adds support for inlining StandardOps, but other dialects will be added in followups as necessary.
PiperOrigin-RevId: 267426759
The refactoring of ExecutionEngine dropped the usage of the irTransform function used to pass -O3 and other options to LLVM. As a consequence, the proper optimizations do not kick in in LLMV-land.
This CL makes use of the transform function and allows producing avx512 instructions, on an internal example, when using:
`mlir-cpu-runner -dump-object-file=1 -object-filename=foo.o` combined with `objdump -D foo.o`.
Assembly produced resembles:
```
2b2e: 62 72 7d 48 18 04 0e vbroadcastss (%rsi,%rcx,1),%zmm8
2b35: 62 71 7c 48 28 ce vmovaps %zmm6,%zmm9
2b3b: 62 72 3d 48 a8 c9 vfmadd213ps %zmm1,%zmm8,%zmm9
2b41: 62 f1 7c 48 28 cf vmovaps %zmm7,%zmm1
2b47: 62 f2 3d 48 a8 c8 vfmadd213ps %zmm0,%zmm8,%zmm1
2b4d: 62 f2 7d 48 18 44 0e vbroadcastss 0x4(%rsi,%rcx,1),%zmm0
2b54: 01
2b55: 62 71 7c 48 28 c6 vmovaps %zmm6,%zmm8
2b5b: 62 72 7d 48 a8 c3 vfmadd213ps %zmm3,%zmm0,%zmm8
2b61: 62 f1 7c 48 28 df vmovaps %zmm7,%zmm3
2b67: 62 f2 7d 48 a8 da vfmadd213ps %zmm2,%zmm0,%zmm3
2b6d: 62 f2 7d 48 18 44 0e vbroadcastss 0x8(%rsi,%rcx,1),%zmm0
2b74: 02
2b75: 62 f2 7d 48 a8 f5 vfmadd213ps %zmm5,%zmm0,%zmm6
2b7b: 62 f2 7d 48 a8 fc vfmadd213ps %zmm4,%zmm0,%zmm7
```
etc.
Fixestensorflow/mlir#120
PiperOrigin-RevId: 267281097
This follows up on the recent restructuring that moved the dialects under
lib/Dialect and inter-dialect conversions to lib/Conversion. Originally, the
tests for both the LLVMIR dialect itself and the conversion from Standard to
LLVMIR dialect lived under test/LLVMIR. This no longer reflects the code
structure. Move the tests to either test/Dialect/LLVMIR or
test/Conversion/StandardToLLVM depending on the features they exercise.
PiperOrigin-RevId: 267159219
- address remaining comments from PR tensorflow/mlir#87 for better test coverage for
pipeline-data-transfer/replaceAllMemRefUsesWith
- remove dead tag allocs the same way they are removed for the replaced buffers
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#106
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/106 from bondhugula:followup 9e868666d047e8d43e5f82f43e4093b838c710fa
PiperOrigin-RevId: 267144774
The syntax for splat attributes changed, but was not updated in the description
of the LLVM dialect constant operations in LLVM.md. Update the document to use
the correct syntax. Also add a dialect roundtrip test for such attribute,
which was previously missing.
PiperOrigin-RevId: 267116305
This CL adds support for proper cloning of Linalg ops that have regions (i.e. the generic linalg op). This is used to properly implement tiling and fusion for such ops. Adequate tests are added.
PiperOrigin-RevId: 267027176
- introduce utility to convert memrefs with non-identity layout maps to
ones with identity layout maps: convert the type and rewrite/remap all
its uses
- add this utility to -simplify-affine-structures pass for testing
purposes
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#104
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/104 from bondhugula:memref-normalize f2c914aa1890e8860326c9e33f9aa160b3d65e6d
PiperOrigin-RevId: 266985317
This will allow us to use MLIR's folding infrastructure to deduplicate
SPIR-V constants.
This CL also changed isValidSPIRVType in SPIRVDialect to a static method.
PiperOrigin-RevId: 266984403
- the [begin, end) range identified for copying could end in between the
block, which makes hoisting invalid in some cases. Change the range
identification to always end with end of block.
- add test case to exercise these (with fast mem capacity set to minimal so
that single element memref buffers are generated at the innermost loop)
- the location of begin/end of the block range for data copying was
being confused with the insert points for copy in and copy out code.
In cases, where we choose to hoist transfers, these are separate.
- when copy loops are single iteration ones, promote their bodies at
the end of the pass.
- change default fast mem space to 1 (setting it to zero made it
generate DMA op's that won't verify in the default case - since the
DMA ops have a check for src/dest memref spaces being different).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Co-Authored-By: Mehdi Amini <joker.eph@gmail.com>
Closestensorflow/mlir#88
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/88 from bondhugula:datacopy 88697267c45e850c3ced87671e16e4a930c02a42
PiperOrigin-RevId: 266980911
Remove unused variables and attributes from BaseViewConversionHelper
on mlir/lib/Dialect/Linalg/Transforms/LowerToLLVMDialect.cpp
Closestensorflow/mlir#116
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/116 from alexst07:fix-warnings 5f638e4677492cf71a9cc040eeb6b57427d32e06
PiperOrigin-RevId: 266972082
Some of the operations in the LLVM dialect are required to model the LLVM IR in
MLIR, for example "constant" operations are needed to declare a constant value
since MLIR, unlike LLVM, does not support immediate values as operands. To
avoid confusion with actual LLVM operations, we prefix such axuiliary
operations with "mlir.".
PiperOrigin-RevId: 266942838
there is at least one template pattern type
Also remove the other insert overload with pattern pointer as there are no existing users nor any potential known use-case.
PiperOrigin-RevId: 266842920
This change generalizes the structure of the pass manager to allow arbitrary nesting pass managers for other operations, at any level. The only user visible change to existing code is the fact that a PassManager must now provide an MLIRContext on construction. A new class `OpPassManager` has been added that represents a pass manager on a specific operation type. `PassManager` will remain the top-level entry point into the pipeline, with OpPassManagers being nested underneath. OpPassManagers will still be implicitly nested if the operation type on the pass differs from the pass manager. To explicitly build a pipeline, the 'nest' methods on OpPassManager may be used:
// Pass manager for the top-level module.
PassManager pm(ctx);
// Nest a pipeline operating on FuncOp.
OpPassManager &fpm = pm.nest<FuncOp>();
fpm.addPass(...);
// Nest a pipeline under the FuncOp pipeline that operates on spirv::ModuleOp
OpPassManager &spvModulePM = pm.nest<spirv::ModuleOp>();
// Nest a pipeline on FuncOps inside of the spirv::ModuleOp.
OpPassManager &spvFuncPM = spvModulePM.nest<FuncOp>();
To help accomplish this a new general OperationPass is added that operates on opaque Operations. This pass can be inserted in a pass manager of any type to operate on any operation opaquely. An example of this opaque OperationPass is a VerifierPass, that simply runs the verifier opaquely on the current operation.
/// Pass to verify an operation and signal failure if necessary.
class VerifierPass : public OperationPass<VerifierPass> {
void runOnOperation() override {
Operation *op = getOperation();
if (failed(verify(op)))
signalPassFailure();
markAllAnalysesPreserved();
}
};
PiperOrigin-RevId: 266840344
This interface will allow for providing hooks to interrop with operation folding. The first hook, 'shouldMaterializeInto', will allow for controlling which region to insert materialized constants into. The folder will generally materialize constants into the top-level isolated region, this allows for materializing into a lower level ancestor region if it is more profitable/correct.
PiperOrigin-RevId: 266702972
- the list of passes run by mlir-cpu-runner included -lower-affine and
-lower-to-llvm but was missing -lower-to-cfg (because -lower-affine at
some point used to lower straight to CFG); add -lower-to-cfg in
between. IR with affine ops can now be run by mlir-cpu-runner.
- update -lower-to-cfg to be consistent with other passes (create*Pass methods
were changed to return unique ptrs, but -lower-to-cfg appears to have been
missed).
- mlir-cpu-runner was unable to parse custom form of affine op's - fix
link options
- drop unnecessary run options from test/mlir-cpu-runner/simple.mlir
(none of the test cases had loops)
- -convert-to-llvmir was changed to -lower-to-llvm at some point, but the
create pass method name wasn't updated (this pass converts/lowers to LLVM
dialect as opposed to LLVM IR). Fix this.
(If we prefer "convert", the cmd-line options could be changed to
"-convert-to-llvm/cfg" then.)
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#115
PiperOrigin-RevId: 266666909
Use the existing SPV_LogicalOp specification to add the floating-point
comparison operations (both ordered and unordered versions).
To make it easier to import the op-definitions automatically modify
the dialect generation script to update the different .td files based
on whether the operation is an arithmetic op, logical op, etc. Also
allow specification of multiple opcodes with define_inst.sh.
Since this reuses the SPV_LogicalOp framework, no tests specific to
the floating point comparison ops are added with this CL.
PiperOrigin-RevId: 266561634