Reverse the canonicalization of fneg relative to fmul/fdiv. That makes it
easier to implement the transforms (and possibly other fneg transforms) in
1 place because we can always start the pattern match from fneg (either the
legacy binop or the new unop).
There's a secondary practical benefit seen in PR21914 and PR42681:
https://bugs.llvm.org/show_bug.cgi?id=21914https://bugs.llvm.org/show_bug.cgi?id=42681
...hoisting fneg rather than sinking seems to play nicer with LICM in IR
(although this change may expose analysis holes in the other direction).
1. The instcombine test changes show the expected neutral IR diffs from
reversing the order.
2. The reassociation tests show that we were missing an optimization
opportunity to fold away fneg-of-fneg. My reading of IEEE-754 says
that all of these transforms are allowed (regardless of binop/unop
fneg version) because:
"For all other operations [besides copy/abs/negate/copysign], this
standard does not specify the sign bit of a NaN result."
In all of these transforms, we always have some other binop
(fadd/fsub/fmul/fdiv), so we are free to flip the sign bit of a
potential intermediate NaN operand.
(If that interpretation is wrong, then we must already have a bug in
the existing transforms?)
3. The clang tests shouldn't exist as-is, but that's effectively a
revert of rL367149 (the test broke with an extension of the
pre-existing fneg canonicalization in rL367146).
Differential Revision: https://reviews.llvm.org/D65399
llvm-svn: 367447
The backend already does this via isNegatibleForFree(),
but we may want to alter the fneg IR canonicalizations
that currently exist, so we need to try harder to fold
fneg in IR to avoid regressions.
llvm-svn: 367194
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This accounts for the missing IR fold noted in D50195. We don't need any fast-math to enable the negation transform.
FP negation can always be folded into an fmul/fdiv constant to eliminate the fneg.
I've limited this to one-use to ensure that we are eliminating an instruction rather than replacing fneg by a
potentially expensive fdiv or fmul.
Differential Revision: https://reviews.llvm.org/D50417
llvm-svn: 339248
There are a pair of folds that try to merge fneg into fsub
with an intervening cast, but as shown in the FIXME tests,
they can create extra instructions.
llvm-svn: 329501
This restores what was lost with rL73243 but without
re-introducing the bug that was present in the old code.
Note that we already have these transforms if the ops are
marked 'fast' (and I assume that's happening somewhere in
the code added with rL170471), but we clearly don't need
all of 'fast' for these transforms.
llvm-svn: 329362
A fold for this pattern was removed at rL73243 to fix PR4374:
https://bugs.llvm.org/show_bug.cgi?id=4374
...and apparently there were no tests that went with that fold.
llvm-svn: 329360
There used to be a fold that would handle this case more generally,
but it was removed at rL73243 to fix PR4374:
https://bugs.llvm.org/show_bug.cgi?id=4374
llvm-svn: 329322
With the updated LangRef ( D44216 / rL327138 ) in place, we can proceed with more constant folding.
I'm intentionally taking the conservative path here: no matter what the constant or the FMF, we can
always fold to NaN. This is because the undef operand can be chosen as NaN, and in our simplified
default FP env, nothing else happens - NaN just propagates to the result. If we find some way/need
to propagate undef instead, that can be added subsequently.
The tests show that we always choose the same quiet NaN constant (0x7FF8000000000000 in IR text).
There were suggestions to improve that with a 'NaN' string token or not always print a 64-bit hex
value, but those are independent changes. We might also consider setting/propagating the payload of
NaN constants as an enhancement.
Differential Revision: https://reviews.llvm.org/D44308
llvm-svn: 327208
There is logic to track the expected number of instructions
produced. It thought in this case an instruction would
be necessary to negate the result, but here it folded
into a ConstantExpr fneg when the non-undef value operand
was cancelled out by the second fsub.
I'm not sure why we don't fold constant FP ops with undef currently,
but I think that would also avoid this problem.
llvm-svn: 301199