Commit Graph

5 Commits

Author SHA1 Message Date
James Molloy 9026518e73 [ModuloSchedule] Peel out prologs and epilogs, generate actual code
Summary:
This extends the PeelingModuloScheduleExpander to generate prolog and epilog code,
and correctly stitch uses through the prolog, kernel, epilog DAG.

The key concept in this patch is to ensure that all transforms are *local*; only a
function of a block and its immediate predecessor and successor. By defining the problem in this way
we can inductively rewrite the entire DAG using only local knowledge that is easy to
reason about.

For example, we assume that all prologs and epilogs are near-perfect clones of the
steady-state kernel. This means that if a block has an instruction that is predicated out,
we can redirect all users of that instruction to that equivalent instruction in our
immediate predecessor. As all blocks are clones, every instruction must have an equivalent in
every other block.

Similarly we can make the assumption by construction that if a value defined in a block is used
outside that block, the only possible user is its immediate successors. We maintain this
even for values that are used outside the loop by creating a limited form of LCSSA.

This code isn't small, but it isn't complex.

Enabled a bunch of testing from Hexagon. There are a couple of tests not enabled yet;
I'm about 80% sure there isn't buggy codegen but the tests are checking for patterns
that we don't produce. Those still need a bit more investigation. In the meantime we
(Google) are happy with the code produced by this on our downstream SMS implementation,
and believe it generates correct code.

Subscribers: mgorny, hiraditya, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68205

llvm-svn: 373462
2019-10-02 12:46:44 +00:00
David Green 63a2aa715a [LSR] Limit the recursion for setup cost
In some circumstances we can end up with setup costs that are very complex to
compute, even though the scevs are not very complex to create. This can also
lead to setupcosts that are calculated to be exactly -1, which LSR treats as an
invalid cost. This patch puts a limit on the recursion depth for setup cost to
prevent them taking too long.

Thanks to @reames for the report and test case.

Differential Revision: https://reviews.llvm.org/D60944

llvm-svn: 358958
2019-04-23 08:52:21 +00:00
David Green ffc922ec35 [LSR] Attempt to increase the accuracy of LSR's setup cost
In some loops, we end up generating loop induction variables that look like:
  {(-1 * (zext i16 (%i0 * %i1) to i32))<nsw>,+,1}
As opposed to the simpler:
  {(zext i16 (%i0 * %i1) to i32),+,-1}
i.e we count up from -limit to 0, not the simpler counting down from limit to
0. This is because the scores, as LSR calculates them, are the same and the
second is filtered in place of the first. We end up with a redundant SUB from 0
in the code.

This patch tries to make the calculation of the setup cost a little more
thoroughly, recursing into the scev members to better approximate the setup
required. The cost function for comparing LSR costs is:

return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
                C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
       std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
                C2.ScaleCost, C2.ImmCost, C2.SetupCost);
So this will only alter results if none of the other variables turn out to be
different.

Differential Revision: https://reviews.llvm.org/D58770

llvm-svn: 355597
2019-03-07 13:44:40 +00:00
Krzysztof Parzyszek d91a9e27a9 [Hexagon] Simplify CFG after atomic expansion
This will remove suboptimal branching from the generated ll/sc loops.
The extra simplification pass affects a lot of testcases, which have
been modified to accommodate this change: either by modifying the
test to become immune to the CFG simplification, or (less preferablt)
by adding option -hexagon-initial-cfg-clenaup=0.

llvm-svn: 338774
2018-08-02 22:17:53 +00:00
Krzysztof Parzyszek 4094ab73cc [Hexagon] Add a few more lit tests, NFC
llvm-svn: 328023
2018-03-20 19:35:09 +00:00