Details: The test previously expected a specific order of those symbols, which is not guaranteed (could change simply due to hashing changes, etc).
So we change it to explicitly sort the symbols before checking contents.
PR/53026
Differential Revision: https://reviews.llvm.org/D116813
In LC_DYSYMTAB, private externs were still emitted as exported symbols instead
of as locals.
Fixes PR50373. See bug for details.
Differential Revision: https://reviews.llvm.org/D102662
Has the effect that `__mh_execute_header` stays in the symbol table of
outputs even after running `strip` on the output. I don't know if that's
important for anything -- my motivation for the patch is just is to make
the output more similar to ld64.
(Corresponds to symbolTableInAndNeverStrip in ld64.)
Differential Revision: https://reviews.llvm.org/D102619
The right symbol flag mask is ~0x7, not ~0xf.
Also emit string names for the other flags (we were missing some).
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D101548
D101114 enforced proper version checks, which exposed a variety of version
mismatch issues in our tests. We previously changed the test inputs to
target 10.0, which was the simpler thing to do, but we should really
just have our lit.local.cfg default to targeting 10.15, which is what is done
here. We're not likely to ever have proper support for the older versions
anyway, as that would require more work for unclear benefit; for instance,
llvm-mc seems to generate a different compact unwind format for older macOS
versions, which would cause our compact-unwind.s test to fail.
Targeting 10.15 by default causes the following behavioral changes:
* `__mh_execute_header` is now a section symbol instead of an absolute symbol
* LC_BUILD_VERSION gets emitted instead of LC_VERSION_MIN_MACOSX. The former is
32 bytes in size whereas the latter is 16 bytes, so a bunch of hardcoded
address offsets in our tests had to be updated.
* >= 10.6 executables are PIE by default
Note that this diff was stacked atop of a local revert of most of the test
changes in rG8c17a875150f8e736e8f9061ddf084397f45f4c5, to make review easier.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D101119
I noticed two problems with the previous implementation:
* N_ALT_ENTRY symbols weren't being handled correctly -- they should
determine the size of the previous symbol, even though they don't
cause a new section to be created
* The last symbol in a section had its size calculated wrongly;
the first subsection's size was used instead of the last one
I decided to take the opportunity to refactor things as well, mainly to
realize my observation
[here](https://reviews.llvm.org/D98837#inline-931511) that we could
avoid doing a binary search to match symbols with subsections. I think
the resulting code is a bit simpler too.
N Min Max Median Avg Stddev
x 20 4.31 4.43 4.37 4.3775 0.034162922
+ 20 4.32 4.43 4.38 4.3755 0.02799906
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D99972
The Mach kernel & codesign on arm64 macOS has strict requirements for alignment and sequence of segments and sections. Dyld probably is just as picky, though kernel & codesign reject malformed Mach-O files before dyld ever has a chance.
I developed this diff by incrementally changing alignments & sequences to match the output of ld64. I stopped when my hello-world test program started working: `codesign --verify` succeded, and `execve(2)` didn't immediately fail with `errno == EBADMACHO` = `"Malformed Mach-O file"`.
Differential Revision: https://reviews.llvm.org/D94935
Before this, a hello world program would contain many many unnecessary
entries in its string table.
No behavior change, just makes the string table in the output smaller
and more like ld64's.
Differential Revision: https://reviews.llvm.org/D93711
Private extern symbols are used for things scoped to the linkage unit.
They cause duplicate symbol errors (so they're in the symbol table,
unlike TU-scoped truly local symbols), but they don't make it into the
export trie. They are created e.g. by compiling with
-fvisibility=hidden.
If two weak symbols have differing privateness, the combined symbol is
non-private external. (Example: inline functions and some TUs that
include the header defining it were built with
-fvisibility-inlines-hidden and some weren't).
A weak private external symbol implicitly has its "weak" dropped and
behaves like a regular strong private external symbol: Weak is an export
trie concept, and private symbols are not in the export trie.
If a weak and a strong symbol have different privateness, the strong
symbol wins.
If two common symbols have differing privateness, the larger symbol
wins. If they have the same size, the privateness of the symbol seen
later during the link wins (!) -- this is a bit lame, but it matches
ld64 and this behavior takes 2 lines less to implement than the less
surprising "result is non-private external), so match ld64.
(Example: `int a` in two .c files, both built with -fcommon,
one built with -fvisibility=hidden and one without.)
This also makes `__dyld_private` a true TU-local symbol, matching ld64.
To make this work, make the `const char*` StringRefZ ctor to correctly
set `size` (without this, writing the string table crashed when calling
getName() on the __dyld_private symbol).
Mention in CommonSymbol's comment that common symbols are now disabled
by default in clang.
Mention in -keep_private_externs's HelpText that the flag only has an
effect with `-r` (which we don't implement yet -- so this patch here
doesn't regress any behavior around -r + -keep_private_externs)). ld64
doesn't explicitly document it, but the commit text of
http://reviews.llvm.org/rL216146 does, and ld64's
OutputFile::buildSymbolTable() checks `_options.outputKind() ==
Options::kObjectFile` before calling `_options.keepPrivateExterns()`
(the only reference to that function).
Fixes PR48536.
Differential Revision: https://reviews.llvm.org/D93609
Weak references need not necessarily be satisfied at runtime (but they must
still be satisfied at link time). So symbol resolution still works as per usual,
but we now pass around a flag -- ultimately emitting it in the bind table -- to
indicate if a given dylib symbol is a weak reference.
ld64's behavior for symbols that have both weak and strong references is
a bit bizarre. For non-function symbols, it will emit a weak import. For
function symbols (those referenced by BRANCH relocs), it will emit a
regular import. I'm not sure what value there is in that behavior, and
since emulating it will make our implementation more complex, I've
decided to treat regular weakrefs like function symbol ones for now.
Fixes PR48511.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93369
ld64 emits string tables which start with a space and a zero byte. We
match its behavior here since some tools depend on it.
Similar rationale as {D89561}.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D89639
Symbols of the same type must be laid out contiguously: following ld64's
lead, we choose to emit all local symbols first, then external symbols,
and finally undefined symbols. For each symbol type, the LC_DYSYMTAB
load command will record the range (start index and total number) of
those symbols in the symbol table.
This work was motivated by the fact that LLDB won't search for debug
info if LC_DYSYMTAB says there are no local symbols (since STABS symbols
are all local symbols). With this change, LLDB is now able to display
the source lines at a given breakpoint when debugging our binaries.
Some tests had to be updated due to local symbol names now appearing in
`llvm-objdump`'s output.
Reviewed By: #lld-macho, smeenai, clayborg
Differential Revision: https://reviews.llvm.org/D89285
Summary:
As mentioned in https://reviews.llvm.org/D81326#2093931, I'm not sure it
makes sense to use the default target triple to determine -arch.
Long-term we should probably detect it from the input object files, but
in the meantime it would be nice not to have to add it to all our tests
by using a convenient default.
Reviewers: #lld-macho
Subscribers: arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81983
Summary: After {D81326} landed, some tests started failing if they did
not have `-arch` specified. I think one of the reasons happened was due
to the fact that we were taking a reference to a temporary value that
was freed too early. Fixing that got the error to go away on my local
Linux machine.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D81802
Use the default target triple configured by the user to determine the
default architecture for `ld64.lld`. Stash the architecture in the
configuration as when linking against TBDs, we will need to filter out
the symbols based upon the architecture. Treat the Haswell slice as it
is equivalent to `x86_64` but with the extra Haswell extensions (e.g.
AVX2, FMA3, BMI1, etc). This will make it easier to add new
architectures in the future.
This change also changes the failure mode where an invalid `-arch`
parameter will result in the linker exiting without further processing.
Build the trie by performing a three-way radix quicksort: We start by
sorting the strings by their first characters, then sort the strings
with the same first characters by their second characters, and so on
recursively. Each time the prefixes diverge, we add a node to the trie.
Thanks to @ruiu for the idea.
I used llvm-mc's radix quicksort implementation as a starting point. The
trie offset fixpoint code was taken from
MachONormalizedFileBinaryWriter.cpp.
Differential Revision: https://reviews.llvm.org/D76977
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee and reverted in fbae153ca5 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
Summary:
Add logic for emitting the correct set of load commands and segments
when `-dylib` is passed.
I haven't gotten to implementing a real export trie yet, so we can only
emit a single symbol, but it's enough to replace the YAML test files
introduced in D76252.
Differential Revision: https://reviews.llvm.org/D76908
This diff implements basic support for writing a symbol table.
- Attributes are loosely supported for extern symbols and not at all for
other types
Immediate future work will involve implementing section merging.
Initial version by Kellie Medlin <kelliem@fb.com>
Differential Revision: https://reviews.llvm.org/D76742