When a live interval is being spilled, rather than creating short, non-spillable
intervals for every def / use, split the interval at BB boundaries. That is, for
every BB where the live interval is defined or used, create a new interval that
covers all the defs and uses in the BB.
This is designed to eliminate one common problem: multiple reloads of the same
value in a single basic block. Note, it does *not* decrease the number of spills
since no copies are inserted so the split intervals are *connected* through
spill and reloads (or rematerialization). The newly created intervals can be
spilled again, in that case, since it does not span multiple basic blocks, it's
spilled in the usual manner. However, it can reuse the same stack slot as the
previously split interval.
This is currently controlled by -split-intervals-at-bb.
llvm-svn: 44198
MachineOperand auxInfo. Previous clunky implementation uses an external map
to track sub-register uses. That works because register allocator uses
a new virtual register for each spilled use. With interval splitting (coming
soon), we may have multiple uses of the same register some of which are
of using different sub-registers from others. It's too fragile to constantly
update the information.
llvm-svn: 44104
Turn a store folding instruction into a load folding instruction. e.g.
xorl %edi, %eax
movl %eax, -32(%ebp)
movl -36(%ebp), %eax
orl %eax, -32(%ebp)
=>
xorl %edi, %eax
orl -36(%ebp), %eax
mov %eax, -32(%ebp)
This enables the unfolding optimization for a subsequent instruction which will
also eliminate the newly introduced store instruction.
llvm-svn: 43192
Turn this:
movswl %ax, %eax
movl %eax, -36(%ebp)
xorl %edi, -36(%ebp)
into
movswl %ax, %eax
xorl %edi, %eax
movl %eax, -36(%ebp)
by unfolding the load / store xorl into an xorl and a store when we know the
value in the spill slot is available in a register. This doesn't change the
number of instructions but reduce the number of times memory is accessed.
Also unfold some load folding instructions and reuse the value when similar
situation presents itself.
llvm-svn: 42947
(almost) a register copy. However, it always coalesced to the register of the
RHS (the super-register). All uses of the result of a EXTRACT_SUBREG are sub-
register uses which adds subtle complications to load folding, spiller rewrite,
etc.
llvm-svn: 42899
with a general target hook to identify rematerializable instructions. Some
instructions are only rematerializable with specific operands, such as loads
from constant pools, while others are always rematerializable. This hook
allows both to be identified as being rematerializable with the same
mechanism.
llvm-svn: 37644
The code sequence before the spiller is something like:
= tMOVrr
%reg1117 = tMOVrr
%reg1078 = tLSLri %reg1117, 2
The it starts spilling:
%r0 = tRestore <fi#5>, 0
%r1 = tRestore <fi#7>, 0
%r1 = tMOVrr %r1<kill>
tSpill %r1, <fi#5>, 0
%reg1078 = tLSLri %reg1117, 2
It restores the value while processing the first tMOVrr. At this point, the
spiller remembers fi#5 is available in %r0. Next it processes the second move.
It restores the source before the move and spills the result afterwards. The
move becomes a noop and is deleted. However, a spill has been inserted and that
should invalidate reuse of %r0 for fi#5 and add reuse of %r1 for fi#5.
Therefore, %reg1117 (which is also assigned fi#5) should get %r1, not %r0.
llvm-svn: 34039
t1 := op t2, t3
t2 <- assigned r0 for use by the reload but ended up reuse r1
t3 <- assigned r1 for use by the reload but ended up reuse r0
t1 <- desires r1
sees r1 is taken by t2, tries t2's reload register r0
sees r0 is taken by t3, tries t3's reload register r1
sees r1 is taken by t2, tries t2's reload register r0 ...
llvm-svn: 33382
rework the hacks that had us passing OStream in. We pass in std::ostream*
instead, check for null, and then dispatch to the correct print() method.
llvm-svn: 32636
If a spillslot value is available in a register, and there is a noop copy that
targets that register, the spiller correctly decide not to invalidate the
spillslot register.
However, even though the noop copy does not clobbers the value. It does start a
new intersecting live range. That means the spillslot register is available for
use but should not be reused for a two-address instruction modref operand which
would clobber the new live range.
When we remove the noop copy, update the available information by clearing the
canClobber bit.
llvm-svn: 32576
tied to another oeprand, 2) whether is is being tied to by another operand. So
the destination operand of a two-address MI can be correctly identified.
llvm-svn: 32354