Summary:
Adds support for doing range-based for-loops on LLDB's VariableList and
modernises all the index-based for-loops in LLDB where possible.
Reviewers: labath, jdoerfert
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70668
Summary:
LLDB's ASTDumper is just a clone of Clang's ASTDumper but with some scary code and
some unrelated functionality (like dumping name/attributes of types). This removes LLDB's ASTDumper
and replaces its uses with the `ClangUtils::DumpDecl` method that just calls Clang's ASTDumper
and returns the result as a string.
The few uses where we just want a textual representation of a type (which will print their name/attributes but not
dump any AST) are now also in ClangUtil under a `ToString` name until we find a better home for them.
Reviewers: labath
Reviewed By: labath
Subscribers: mgorny, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70663
Split CallEdge into DirectCallEdge and IndirectCallEdge. Teach
DWARFExpression how to evaluate entry values in cases where the current
activation was created by an indirect call.
rdar://57094085
Differential Revision: https://reviews.llvm.org/D70100
This is a correctness fix for the Clang DWARF parser that primarily
matters for swift-lldb's ability to import Clang types that were
reconstructed from DWARF into Swift.
rdar://problem/55025799
Differential Revision: https://reviews.llvm.org/D70580
This overload is only used in one place and having static overloads for
all methods that only do an additional clang::ASTContext -> ClangASTContext
conversion is just not sustainable.
Due to alginment and packing using separate members takes up the same
amount of space, but makes it far less cumbersome to deal with it in
constructors etc.
I wanted to further simplify ParseTypeFromClangModule by replacing the
hand-rolled loop with ForEachExternalModule, and then realized that
ForEachExternalModule also had the problem of visiting the same leaf
node an exponential number of times in the worst-case. This adds a set
of searched_symbol_files set to the function as well as the ability to
early-exit from it.
Differential Revision: https://reviews.llvm.org/D70215
Performance issues lead to the libc++ std::function formatter to be disabled. We addressed some of those performance issues by adding caching see D67111
This PR fixes the first lookup performance by not using FindSymbolsMatchingRegExAndType(...) and instead finding the compilation unit the std::function wrapped callable should be in and then searching for the callable directly in the CU.
Differential Revision: https://reviews.llvm.org/D69913
This is basically the same bug as in r260434.
SymbolFileDWARF::FindTypes has exponential worst-case when digging
through dependency DAG of .pcm files because each object file and .pcm
file may depend on an already-visited .pcm file, which may again have
dependencies. Fixed here by carrying a set of already visited
SymbolFiles around.
rdar://problem/56993424
Differential Revision: https://reviews.llvm.org/D70106
gcc-9 started warning when a class defined a copy constructor without a
copy assignment operator (or vice-versa).
This fixes those warnings by deleting the other special member too
(after verifying it doesn't do anything non-trivial).
Summary:
All type in these functions need be valid and Clang types, so
we might as well replace these checks with IsClangType.
Also lets IsClangType explicitly check for validity instead of
assuming that the TypeSystem is a nullptr.
Subscribers: abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70001
Summary: This option was added downstream in swift-lldb. This upstreams this option as it seems useful and also adds the missing tests.
Reviewers: #lldb, kwk, labath
Reviewed By: kwk, labath
Subscribers: labath, kwk, abidh, JDevlieghere, lldb-commits
Tags: #lldb, #upstreaming_lldb_s_downstream_patches
Differential Revision: https://reviews.llvm.org/D69944
Summary:
Instead of filling out a std::string and returning a bool to indicate
success, returning a std::string directly and testing to see if it's
empty seems like a cleaner solution overall.
Differential Revision: https://reviews.llvm.org/D69641
Summary:
We add support for DW_AT_export_symbols to detect anonymous struct on top of the heuristics implemented in D66175
This should allow us to differentiate anonymous structs and unnamed structs.
We also fix TestTypeList.py which was incorrectly detecting an unnamed struct as an anonymous struct.
Differential Revision: https://reviews.llvm.org/D68961
This patch removes the size_t return value and the append parameter
from the remainder of the Find.* functions in LLDB's internal API. As
in the previous patches, this is motivated by the fact that these
parameters aren't really used, and in the case of the append parameter
were frequently implemented incorrectly.
Differential Revision: https://reviews.llvm.org/D69119
llvm-svn: 375160
Summary:
Currently when invoking lldb-test symbols -dump-ast it parses all the debug symbols and calls print(...) on the TranslationUnitDecl.
While useful the TranslationUnitDecl::print(...) method gives us a higher level view then the dump from ASTDumper which is what we get when we invoke dump() on a specific AST node.
The main motivation for this change is allow us to verify that the AST nodes we create when we parse DWARF. For example in order to verify we are correctly using DIFlagExportSymbols added by D66667
Differential Revision: https://reviews.llvm.org/D67994
llvm-svn: 374570
This patch adds an implementation of unwinding using PE EH info. It allows to
get almost ideal call stacks on 64-bit Windows systems (except some epilogue
cases, but I believe that they can be fixed with unwind plan disassembly
augmentation in the future).
To achieve the goal the CallFrameInfo abstraction was made. It is based on the
DWARFCallFrameInfo class interface with a few changes to make it less
DWARF-specific.
To implement the new interface for PECOFF object files the class PECallFrameInfo
was written. It uses the next helper classes:
- UnwindCodesIterator helps to iterate through UnwindCode structures (and
processes chained infos transparently);
- EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram;
- EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction
over the low-level unwind codes and simplifies work with them. It contains
only the information that is relevant to unwinding in the unified form. Also
the required unwind codes are read from the object file only once with it;
- EHProgramRange allows to take a range of EHProgram and to build an unwind row
for it.
So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges
corresponding to every offset in prologue and builds the rows of the resulted
unwind plan. The resulted plan covers the whole range of the function except the
epilogue.
Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola
Reviewed By: jasonmolenda
Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67347
llvm-svn: 374528
We currently don't handle the error in the Expected we get
when searching for an equal local DeclContext. Usually this can't
happen as this would require that we have a STL container and
we can find libc++'s std module, but when we load the module in
the expression parser the module doesn't even contain the 'std'
namespace. The only way I see to test this is by having a fake
'std' module that requires a special define to actually provide
its contents, while it will just be empty (that is, it doesn't
even contain the 'std' namespace) without that define. LLDB currently
doesn't know about that define in the expression parser, so it
will load the wrong 'empty' module which should trigger this error.
Also removed the 'auto' for that variable as the function name
doesn't make it obvious that this is an expected and not just
a optional/ptr (which is how this slipped in from the start).
llvm-svn: 374525
Testing whether a name is mangled or not is extremely cheap and can be
done by looking at the first two characters. Mangled knows how to do
it. On the flip side, many call sites that currently pass in an
is_mangled determination do not know how to correctly do it (for
example, they leave out Swift mangling prefixes).
This patch removes this entry point and just forced Mangled to
determine the mangledness of a string itself.
Differential Revision: https://reviews.llvm.org/D68674
llvm-svn: 374180
TestCPP11EnumTypes.py should have covered all our bases when it comes
to typed enums, but it missed the regression introduced in r374066.
The reason it didn't catch it is somewhat funny: the test was copied
over from another test that recompiled a source file with a different
base type every time, but neither the test source nor the python code
was adapted for testing enums. As a result, this test was just running
8 times the exact same checks on the exact same binary.
This commit fixes the coverage and addresses the issue revealed by
the new tests.
llvm-svn: 374108
When an enumerator has an unsigned type and its high bit set, the
code introduced in r374067 would fail to match it due to a sign
extension snafu. This commit fixes this aspec of the code and should
fix the bots.
I think it's not a complete fix though, I'll add more test coverage
and additional tweaks in a follow-up commit.
llvm-svn: 374095
This change is mostly performance-neutral since our regex engine is
fast, but it's IMHO slightly more readable. Also, matching matching
parenthesis is not a great match for regular expressions.
Differential Revision: https://reviews.llvm.org/D68609
llvm-svn: 374082
Summary:
Using enumerators as flags is standard practice. This patch adds
support to LLDB to display such enum values symbolically, eg:
(E) e1 = A | B
If enumerators don't cover the whole value, the remaining bits are
displayed as hexadecimal:
(E) e4 = A | 0x10
Detecting whether an enum is used as a bitfield or not is
complicated. This patch implements a heuristic that assumes that such
enumerators will either have only 1 bit set or will be a combination
of previous values.
This patch doesn't change the way we currently display enums which the
above heuristic would not consider as bitfields.
Reviewers: jingham, labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D67520
llvm-svn: 374067
Link against clang-cpp dylib rather than split libs when
CLANG_LINK_CLANG_DYLIB is enabled.
Differential Revision: https://reviews.llvm.org/D68456
llvm-svn: 373734
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
We now only use this function directly after initialization. As Clear()
resets the ASTContext back to its initial state, this is just a no-op.
There are no other users for this and we no longer can set the ASTContext
after construction, so Clear has no useful purpose anymore. It's also
mostly copy-pasted from Finalize().
llvm-svn: 373460
Reason for this patch is the Ssame reason as for the previous patches:
Having a ClangASTContext and being able to switch the associated ASTContext isn't
a use case we have (or should have), so let's simplify all this code.
This way it becomes clearer in what order we initialize data structures.
The DWARFASTParserClangTests changes are necessary as the test is using
a ClangASTContext but relied on the fact that no called function ever calls
getASTContext() on our ClangASTContext (as that would create the ASTContext).
As we now always create the ASTContext the fact that we had an uninitialized
FileSystem made the test crash.
llvm-svn: 373457
In r368345 I accidentally introduced a regression that would
over-report the number of matches found by FindTypes if the
DeclContext Filter was hit.
This patch simply removes the size_t return parameter altogether —
it's not that useful.
rdar://problem/55500457
Differential Revision: https://reviews.llvm.org/D68169
llvm-svn: 373344
We have no use case in LLDB where we actually do want to change the ASTContext after
it the ClangASTContext has been constructed. All callers of setASTContext are just setting
the ASTContext directly after construction, so we might as well make this a Constructor
instead of supporting this tricky use case.
llvm-svn: 373330
Now using default initializers and StringRef.
Also formats the member list that we excluded from clang-format
at some point and still hangs around with the old LLDB code style.
llvm-svn: 373329
I noticed that SymbolFileDWARFDebugMap::FindTypes was implementing it
incorrectly (passing append=false in a for-loop to recursive calls to
FindTypes would yield only the very last set of results), but instead
of fixing it, removing it seemed like an even better option.
rdar://problem/54412692
Differential Revision: https://reviews.llvm.org/D68171
llvm-svn: 373224
Summary:
It uses the new ability of ABI plugins to vend llvm::MCRegisterInfo
structs (which is what is needed to turn dwarf register numbers into
strings).
Reviewers: JDevlieghere, aprantl, jasonmolenda
Subscribers: tatyana-krasnukha, lldb-commits
Differential Revision: https://reviews.llvm.org/D67966
llvm-svn: 373208
Summary:
Windows unwinding is weird. The unwind rules do not (always) describe
the precise layout of the stack, but rather expect the debugger to scan
the stack for something which looks like a plausible return address, and
the unwind based on that. The reason this works somewhat reliably is
because the the unwinder also has access to the frame sizes of the
functions on the stack. This allows it (in most cases) to skip function
pointers in local variables or function arguments, which could otherwise
be mistaken for return addresses.
Implementing this kind of unwind mechanism in lldb was a bit challenging
because we expect to be able to statically describe (in the UnwindPlan)
structure, the layout of the stack for any given instruction. Giving a
precise desription of this is not possible, because it requires
correlating information from two functions -- the pushed arguments to a
function are considered a part of the callers stack frame, and their
size needs to be considered when unwinding the caller, but they are only
present in the unwind entry of the callee. The callee may end up being
in a completely different module, or it may not even be possible to
determine it statically (indirect calls).
This patch implements this functionality by introducing a couple of new
APIs:
SymbolFile::GetParameterStackSize - return the amount of stack space
taken up by parameters of this function.
SymbolFile::GetOwnFrameSize - the size of this function's frame. This
excludes the parameters, but includes stuff like local variables and
spilled registers.
These functions are then used by the unwinder to compute the estimated
location of the return address. This address is not always exact,
because the stack may contain some additional values -- for instance, if
we're getting ready to call a function then the stack will also contain
partially set up arguments, but we will not know their size because we
haven't called the function yet. For this reason the unwinder will crawl
up the stack from the return address position, and look for something
that looks like a possible return address. Currently, we assume that
something is a valid return address if it ends up pointing to an
executable section.
All of this logic kicks in when the UnwindPlan sets the value of CFA as
"isHeuristicallyDetected", which is also the final new API here. Right
now, only SymbolFileBreakpad implements these APIs, but in the future
SymbolFilePDB will use them too.
Differential Revision: https://reviews.llvm.org/D66638
llvm-svn: 373072
LLDB synthesizes decls using asm labels. These decls cannot have a mangle
different than the one specified in the label name. I.e., the '\01' prefix
should not be added.
Fixes an expression evaluation failure in lldb's TestVirtual.py on iOS.
rdar://45827323
Differential Revision: https://reviews.llvm.org/D67774
llvm-svn: 372903