The example demonstrates how to use a module summary index file produced for ThinLTO to:
* find the module that defines the main entry point
* find all extra modules that are required for the build
A LIT test runs the example as part of the LLVM test suite [1] and shows how to create a module summary index file.
The code also provides two Error types that can be useful when working with ThinLTO summaries.
[1] if LLVM_BUILD_EXAMPLES=ON and platform is not Windows
Differential Revision: https://reviews.llvm.org/D85974
This adds RemoteJITLinkMemoryManager is a new subclass of OrcRemoteTargetClient. It implements jitlink::JITLinkMemoryManager and targets the OrcRemoteTargetRPCAPI.
Behavior should be very similar to RemoteRTDyldMemoryManager. The essential differnce with JITLink is that allocations work in isolation from its memory manager. Thus, the RemoteJITLinkMemoryManager might be seen as "JITLink allocation factory".
RPCMMAlloc is another subclass of OrcRemoteTargetClient and implements the actual functionality. It allocates working memory on the host and target memory on the remote target. Upon finalization working memory is copied over to the tagrte address space. Finalization can be asynchronous for JITLink allocations, but I don't see that it makes a difference here.
Differential Revision: https://reviews.llvm.org/D85919
... under the EXPENSIVE_CHECKS build, this fails the assert in the LegacyPM
that verifies whether a pass really did leave the IR alone when it reports no
changes back from its return status.
This patch makes ownership of the JITLinkMemoryManager by ObjectLinkingLayer
optional: the layer can still own the memory manager but no longer has to.
Evevntually we want to move to a state where ObjectLinkingLayer never owns its
memory manager. For now allowing optional ownership makes it easier to develop
classes that can dynamically use either RTDyldObjectLinkingLayer, which owns
its memory managers, or ObjectLinkingLayer (e.g. LLJIT).
TPCDynamicLibrarySearchGenerator uses a TargetProcessControl instance to
load libraries and search for symbol addresses in a target process. It
can be used in place of a DynamicLibrarySearchGenerator to enable
target-process agnostic lookup.
TargetProcessControl is a new API for communicating with JIT target processes.
It supports memory allocation and access, and inspection of some process
properties, e.g. the target proces triple and page size.
Centralizing these APIs allows utilities written against TargetProcessControl
to remain independent of the communication procotol with the target process
(which may be direct memory access/allocation for in-process JITing, or may
involve some form of IPC or RPC).
An initial set of TargetProcessControl-based utilities for lazy compilation is
provided by the TPCIndirectionUtils class.
An initial implementation of TargetProcessControl for in-process JITing
is provided by the SelfTargetProcessControl class.
An example program showing how the APIs can be used is provided in
llvm/examples/OrcV2Examples/LLJITWithTargetProcessControl.
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
Windows doesn't properly support pass plugins (as a shared library
can't have undefined references, which pass plugins assume, being
loaded into a host process that contains provides them), thus
disable building it and the corresponding test.
This matches what was done for the passes unit test in
bc8e442188.
Differential Revision: https://reviews.llvm.org/D79771
This reverts parts of commit 609ef94838,
as it caused build failures on windows if LLVM_BUILD_EXAMPLES was
enabled, due to Bye being added as a dependency of the lit tests.
Set the right target name in clang/examples/Attribute.
Add a missing dependency in the TableGen GlobalISel sublibrary.
Skip building the Bye pass plugin example on windows; plugins
that should have undefined symbols that are found in the host
process aren't supported on windows - this matches what was done
for a unit test in bc8e442188.
Commit 1e68724d24 removed the alignment
argument from the memset intrinsic. Update the BrainF example to match.
Reviewed By: jyknight
Differential Revision: https://reviews.llvm.org/D79601
Calling setProcessAllSections(true) is required to make sure that all sections,
even those not marked as necessary for execution, are passed to the memory
manager.
This should make both static and dynamic NewPM plugins work with LTO.
And as a bonus, it makes static linking of OldPM plugins more reliable
for plugins with both an OldPM and NewPM interface.
I only implemented the command-line flag to specify NewPM plugins in
llvm-lto2, to show it works. Support can be added for other tools later.
Differential Revision: https://reviews.llvm.org/D76866
Adds basic support for LLJITBuilder and DynamicLibrarySearchGenerator. This
allows C API clients to configure LLJIT to expose process symbols to JIT'd
code. An example of this is added in
llvm/examples/OrcV2CBindingsReflectProcessSymbols.
Updates the object buffer ownership scheme in jitLinkForOrc and related
functions: Ownership of both the object::ObjectFile and underlying
MemoryBuffer is passed into jitLinkForOrc and passed back to the onEmit
callback once linking is complete. This avoids the use-after-free errors
that were seen in 98f2bb4461.
Enable use of ExecutionEngine JITEventListeners in RTDyldObjectLinkingLayer.
This allows existing MCJIT clients to more easily migrate to LLJIT / ORCv2.
Example usage in llvm/examples/OrcV2Examples/LLJITWithGDBRegistrationListener.
Differential Revision: https://reviews.llvm.org/D75838
Renames the llvm/examples/LLJITExamples directory to llvm/examples/OrcV2Examples
since it is becoming a home for all OrcV2 examples, not just LLJIT.
See http://llvm.org/PR31103.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.
MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).
This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.
The major changes included in this patch are:
(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.
(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:
- Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
in JITDylibs upon creation. E.g. __dso_handle.
- Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
used to record initializer symbols.
- Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
that a module is being removed.
Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.
This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.
Reviewers: sgraenitz, dblaikie
Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74300
Summary:
Prototype of a JIT compiler that utilizes ThinLTO summaries to compile modules ahead of time. This is an implementation of the concept I presented in my "ThinLTO Summaries in JIT Compilation" talk at the 2018 Developers' Meeting: http://llvm.org/devmtg/2018-10/talk-abstracts.html#lt8
Upfront the JIT first populates the *combined ThinLTO module index*, which provides fast access to the global call-graph and module paths by function. Next, it loads the main function's module and compiles it. All functions in the module will be emitted with prolog instructions that *fire a discovery flag* once execution reaches them. In parallel, the *discovery thread* is busy-watching the existing flags. Once it detects one has fired, it uses the module index to find all functions that are reachable from it within a given number of calls and submits their defining modules to the compilation pipeline.
While execution continues, more flags are fired and further modules added. Ideally the JIT can be tuned in a way, so that in the majority of cases the code on the execution path can be compiled ahead of time. In cases where it doesn't work, the JIT has a *definition generator* in place that loads modules if missing functions are reached.
Reviewers: lhames, dblaikie, jfb, tejohnson, pree-jackie, AlexDenisov, kavon
Subscribers: mgorny, mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, arphaman, jfb, merge_guards_bot, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72486
ObjectLinkingLayer::Plugin instances can be used to receive events from
ObjectLinkingLayer, and to inspect/modify JITLink linker graphs. This example
shows how to write and set up a plugin to dump the linker graph at various
points in the linking process.
These examples were all copied and adapted from the original HowToUseLLJIT
example code, however the calls to cl::ParseCommandLineOptions were not
updated.
This patch makes the target triple available via the LLJIT interface, and moves
the IRTransformLayer from LLLazyJIT down into LLJIT. Together these changes make
it easier to use the lazyReexports utility with LLJIT, and to apply IR
transforms to code as it is compiled in LLJIT (rather than requiring transforms
to be applied manually before code is added). An code example is added in
llvm/examples/LLJITExamples/LLJITWithLazyReexports
- Update documentation now that the move to monorepo has been made
- Do not tie compiler extension testing to LLVM_BUILD_EXAMPLES
- No need to specify LLVM libraries for plugins
- Add NO_MODULE option to match Polly specific requirements (i.e. building the
module *and* linking it statically)
- Issue a warning when building the compiler extension with
LLVM_BYE_LINK_INTO_TOOLS=ON, as it modifies the behavior of clang, which only
makes sense for testing purpose.
Still mark llvm/test/Feature/load_extension.ll as XFAIL because of a
ManagedStatic dependency that's going to be fixed in a seperate commit.
Differential Revision: https://reviews.llvm.org/D72327
There's quite a lot of references to Polly in the LLVM CMake codebase. However
the registration pattern used by Polly could be useful to other external
projects: thanks to that mechanism it would be possible to develop LLVM
extension without touching the LLVM code base.
This patch has two effects:
1. Remove all code specific to Polly in the llvm/clang codebase, replaicing it
with a generic mechanism
2. Provide a generic mechanism to register compiler extensions.
A compiler extension is similar to a pass plugin, with the notable difference
that the compiler extension can be configured to be built dynamically (like
plugins) or statically (like regular passes).
As a result, people willing to add extra passes to clang/opt can do it using a
separate code repo, but still have their pass be linked in clang/opt as built-in
passes.
Differential Revision: https://reviews.llvm.org/D61446
LLJIT now uses JITLink/ObjectLinkingLayer by default where available, so
these steps aren't required to use it. The tutorial is still useful though:
Clients can use it to test altervative linking layer implementations (e.g.
handing off to the system linker) or to test implementations of JITLink that
are still under development.
This patch removes the magic "main" JITDylib from ExecutionEngine. The main
JITDylib was created automatically at ExecutionSession construction time, and
all subsequently created JITDylibs were added to the main JITDylib's
links-against list by default. This saves a couple of lines of boilerplate for
simple JIT setups, but this isn't worth introducing magical behavior for.
ORCv2 clients should now construct their own main JITDylib using
ExecutionSession::createJITDylib and set up its linkages manually using
JITDylib::setSearchOrder (or related methods in JITDylib).
The runAsMain function takes a pointer to a function with a standard C main
signature, int(*)(int, char*[]), and invokes it using the given arguments and
program name. The arguments are copied into writable temporary storage as
required by the C and C++ specifications, so runAsMain safe to use when calling
main functions that modify their arguments in-place.
This patch also uses the new runAsMain function to replace hand-rolled versions
in lli, llvm-jitlink, and the SpeculativeJIT example.
Adds a DumpObjects utility that can be used to dump JIT'd objects to disk.
Instances of DebugObjects may be used by ObjectTransformLayer as no-op
transforms.
This patch also adds an ObjectTransformLayer to LLJIT and an example of how
to use this utility to dump JIT'd objects in LLJIT.
Avoids the need to include TargetMachine.h from various places just for
an enum. Various other enums live here, such as the optimization level,
TLS model, etc. Data suggests that this change probably doesn't matter,
but it seems nice to have anyway.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This patch adds a new IRTransformations directory to llvm/examples/. This is
intended to serve as a new home for example transformations/analysis
code used by various tutorials.
If LLVM_BUILD_EXAMPLES is enabled, the ExamplesIRTransforms library is
linked into the opt binary and the example passes become available.
To start off with, it contains the CFG simplifications used in the IR
part of the 'Getting Started With LLVM: Basics' tutorial at the US LLVM
Developers Meeting 2019.
Reviewers: paquette, jfb, meikeb, lhames, kbarton
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D69416
Summary:
When createing an ORC remote JIT target the current library split forces the target process to link large portions of LLVM (Core, Execution Engine, JITLink, Object, MC, Passes, RuntimeDyld, Support, Target, and TransformUtils). This occurs because the ORC RPC interfaces rely on the static globals the ORC Error types require, which starts a cycle of pulling in more and more.
This patch breaks the ORC RPC Error implementations out into an "OrcError" library which only depends on LLVM Support. It also pulls the ORC RPC headers into their own subdirectory.
With this patch code can include the Orc/RPC/*.h headers and will only incur link dependencies on LLVMOrcError and LLVMSupport.
Reviewers: lhames
Reviewed By: lhames
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68732
ExecutionEngine.cpp contains the anchor() for the ObjectCache base class, so we
need an explicit dependency on it.
Patch by Stephen Neuendorffer. Thanks Stephen!
llvm-svn: 375461
JITLink is LLVM's newer jit-linker. It is an alternative to (and hopefully
eventually a replacement for) LLVM's older jit-linker, RuntimeDyld. Unlike
RuntimeDyld which requries JIT'd code to be complied with the large code
model, JITlink can link code compiled with the small code model, which is
the native code model for a number of targets (including all supported MachO
targets).
This example shows how to:
-- Create a JITLink InProcessMemoryManager
-- Set the code model to small
-- Use a JITLink backed ObjectLinkingLayer as the linking layer for LLJIT
(rather than the default RTDyldObjectLinkingLayer).
Note: This example will only work on platforms supported by JITLink. As of
this commit that's MachO/x86-64 and MachO/arm64.
llvm-svn: 375266
Summary:
This patch introduces, SequenceBBQuery - new heuristic to find likely next callable functions it tries to find the blocks with calls in order of execution sequence of Blocks.
It still uses BlockFrequencyAnalysis to find high frequency blocks. For a handful of hottest blocks (plan to customize), the algorithm traverse and discovered the caller blocks along the way to Entry Basic Block and Exit Basic Block. It uses Block Hint, to stop traversing the already visited blocks in both direction. It implicitly assumes that once the block is visited during discovering entry or exit nodes, revisiting them again does not add much. It also branch probability info (cached result) to traverse only hot edges (planned to customize) from hot blocks. Without BPI, the algorithm mostly return's all the blocks in the CFG with calls.
It also changes the heuristic queries, so they don't maintain states. Hence it is safe to call from multiple threads.
It also implements, new instrumentation to avoid jumping into JIT on every call to the function with the help _orc_speculate.decision.block and _orc_speculate.block.
"Speculator Registration Mechanism is also changed" - kudos to @lhames
Open to review, mostly looking to change implementation of SequeceBBQuery heuristics with good data structure choices.
Reviewers: lhames, dblaikie
Reviewed By: lhames
Subscribers: mgorny, hiraditya, mgrang, llvm-commits, lhames
Tags: #speculative_compilation_in_orc, #llvm
Differential Revision: https://reviews.llvm.org/D66399
llvm-svn: 370092
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking
for LLVMContexts in ORCv2. Prior to this patch contexts were locked as soon
as an associated Module was emitted (to be compiled and linked), and were not
unlocked until the emit call returned. This could lead to deadlocks if
interdependent modules that shared contexts were compiled on different threads:
when, during emission of the first module, the dependence was discovered the
second module (which would provide the required symbol) could not be emitted as
the thread emitting the first module still held the lock.
This patch eliminates this possibility by moving to a finer-grained locking
scheme. Each client holds the module lock only while they are actively operating
on it. To make this finer grained locking simpler/safer to implement this patch
removes the explicit lock method, 'getContextLock', from ThreadSafeModule and
replaces it with a new method, 'withModuleDo', that implicitly locks the context,
calls a user-supplied function object to operate on the Module, then implicitly
unlocks the context before returning the result.
ThreadSafeModule TSM = getModule(...);
size_t NumFunctions = TSM.withModuleDo(
[](Module &M) { // <- context locked before entry to lambda.
return M.size();
});
Existing ORCv2 layers that operate on ThreadSafeModules are updated to use the
new method.
This method is used to introduce Module locking into each of the existing
layers.
llvm-svn: 367686
Summary:
ORCv1 is deprecated. The current aim is to remove it before the LLVM 10.0
release. This patch adds deprecation attributes to the ORCv1 layers and
utilities to warn clients of the change.
Reviewers: dblaikie, sgraenitz, AlexDenisov
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64609
llvm-svn: 366344
LLJITBuilder now has a setCompileFunctionCreator method which can be used to
construct a CompileFunction for the LLJIT instance being created. The motivating
use-case for this is supporting ObjectCaches, which can now be set up at
compile-function construction time. To demonstrate this an example project,
LLJITWithObjectCache, is included.
llvm-svn: 365671
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Make sure all print statements are compatible with Python 2 and Python3 using
the `from __future__ import print_function` statement.
Differential Revision: https://reviews.llvm.org/D56249
llvm-svn: 350307
Returning the error to clients provides an opportunity to introduce readers to
the Expected and Error APIs and makes the tutorial more useful as a starting
point for a real JIT class, while only slightly complicating the code.
llvm-svn: 344720
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes
the '2' suffix from the new ORC layers. If you wish to continue using the old
ORC layers you will need to add a 'Legacy' prefix to your classes. If you were
already using the new ORC layers you will need to drop the '2' suffix.
The legacy layers will remain in-tree until the new layers reach feature
parity with them. This will involve adding support for removing code from the
new layers, and ensuring that performance is comperable.
llvm-svn: 344572
Previously JITCompileCallbackManager only supported single threaded code. This
patch embeds a VSO (see include/llvm/ExecutionEngine/Orc/Core.h) in the callback
manager. The VSO ensures that the compile callback is only executed once and that
the resulting address cached for use by subsequent re-entries.
llvm-svn: 333490
VSOs now track dependencies for materializing symbols. Each symbol must have its
dependencies registered with the VSO prior to finalization. Usually this will
involve registering the dependencies returned in
AsynchronousSymbolQuery::ResolutionResults for queries made while linking the
symbols being materialized.
Queries against symbols are notified that a symbol is ready once it and all of
its transitive dependencies are finalized, allowing compilation work to be
broken up and moved between threads without queries returning until their
symbols fully safe to access / execute.
Related utilities (VSO, MaterializationUnit, MaterializationResponsibility) are
updated to support dependence tracking and more explicitly track responsibility
for symbols from the point of definition until they are finalized.
llvm-svn: 332541
LLVM_ON_WIN32 is set exactly with MSVC and MinGW (but not Cygwin) in
HandleLLVMOptions.cmake, which is where _WIN32 defined too. Just use the
default macro instead of a reinvented one.
See thread "Replacing LLVM_ON_WIN32 with just _WIN32" on llvm-dev and cfe-dev.
No intended behavior change.
This moves over all uses of the macro, but doesn't remove the definition
of it in (llvm-)config.h yet.
llvm-svn: 331127
(notionally Scalar.h is part of libLLVMScalarOpts, so it shouldn't be
included by InstCombine which doesn't/shouldn't need to depend on
ScalarOpts)
llvm-svn: 330669
This reverts commit r327566, it breaks
test/ExecutionEngine/OrcMCJIT/test-global-ctors.ll.
The test doesn't crash with a stack trace, unfortunately. It merely
returns 1 as the exit code.
ASan didn't produce a report, and I reproduced this on my Linux machine
and Windows box.
llvm-svn: 327576
Layer implementations typically mutate module state, and this is better
reflected by having layers own the Module they are operating on.
llvm-svn: 327566
Handles were returned by addModule and used as keys for removeModule,
findSymbolIn, and emitAndFinalize. Their job is now subsumed by VModuleKeys,
which simplify resource management by providing a consistent handle across all
layers.
llvm-svn: 324700
In particular this patch switches RTDyldObjectLinkingLayer to use
orc::SymbolResolver and threads the requried changse (ExecutionSession
references and VModuleKeys) through the existing layer APIs.
The purpose of the new resolver interface is to improve query performance and
better support parallelism, both in JIT'd code and within the compiler itself.
The most visibile change is switch of the <Layer>::addModule signatures from:
Expected<Handle> addModule(std::shared_ptr<ModuleType> Mod,
std::shared_ptr<JITSymbolResolver> Resolver)
to:
Expected<Handle> addModule(VModuleKey K, std::shared_ptr<ModuleType> Mod);
Typical usage of addModule will now look like:
auto K = ES.allocateVModuleKey();
Resolvers[K] = createSymbolResolver(...);
Layer.addModule(K, std::move(Mod));
See the BuildingAJIT tutorial code for example usage.
llvm-svn: 324405
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
code duplication in the client, and improve error propagation.
This patch moves the OrcRemoteTarget rpc::Function declarations from
OrcRemoteTargetRPCAPI into their own namespaces under llvm::orc::remote so that
they can be used in new contexts (in particular, a remote-object-file adapter
layer that I will commit shortly).
Code duplication in OrcRemoteTargetClient (especially in loops processing the
code, rw-data and ro-data allocations) is removed by moving the loop bodies
into their own functions.
Error propagation is (slightly) improved by adding an ErrorReporter functor to
the OrcRemoteTargetClient -- Errors that can't be returned (because they occur
in destructors, or behind stable APIs that don't provide error returns) can be
sent to the ErrorReporter instead. Some methods in the Client API are also
changed to make better use of the Expected class: returning Expected<T>s rather
than returning Errors and taking T&s to store the results.
llvm-svn: 312500
Calling grow may result in an error if, for example, this is a callback
manager for a remote target. We need to be able to return this error to the
callee.
llvm-svn: 312429
This patch updates the ORC layers and utilities to return and propagate
llvm::Errors where appropriate. This is necessary to allow ORC to safely handle
error cases in cross-process and remote JITing.
llvm-svn: 307350
symbol resolver argument.
De-templatizing the symbol resolver is part of the ongoing simplification of
ORC layer API.
Removing the memory management argument (and delegating construction of memory
managers for RTDyldObjectLinkingLayer to a functor passed in to the constructor)
allows us to build JITs whose base object layers need not be compatible with
RTDyldObjectLinkingLayer's memory mangement scheme. For example, a 'remote
object layer' that sends fully relocatable objects directly to the remote does
not need a memory management scheme at all (that will be handled by the remote).
llvm-svn: 307058
Revert "[ORC] Remove redundant semicolons from DEFINE_SIMPLE_CONVERSION_FUNCTIONS uses."
Revert "[ORC] Move ORC IR layer interface from addModuleSet to addModule and fix the module type as std::shared_ptr<Module>."
They broke ExecutionEngine/OrcMCJIT/test-global-ctors.ll on linux.
llvm-svn: 306176
move the ObjectCache from the IRCompileLayer to SimpleCompiler.
This is the first in a series of patches aimed at cleaning up and improving the
robustness and performance of the ORC APIs.
llvm-svn: 306058
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
The variable Proto is moved at the beginning of the codegen() function.
According to the comment above, the pointed object should be used due the
reference P.
Differential Revision: https://reviews.llvm.org/D32939
llvm-svn: 302369
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Many quoted code blocks were not in sync with the actual toy.cpp
files. Improve tutorial text slightly in several places.
Added some step descriptions crucial to avoid crashes (like
InitializeNativeTarget* calls).
Solve/workaround problems with Windows (JIT'ed method not found, using
custom and standard library functions from host process).
Patch by: Moritz Kroll <moritz.kroll@gmx.de>
Differential Revision: https://reviews.llvm.org/D29864
llvm-svn: 294870
LLVM defines `PTHREAD_LIB` which is used by AddLLVM.cmake and various projects
to correctly link the threading library when needed. Unfortunately
`PTHREAD_LIB` is defined by LLVM's `config-ix.cmake` file which isn't installed
and therefore can't be used when configuring out-of-tree builds. This causes
such builds to fail since `pthread` isn't being correctly linked.
This patch attempts to fix that problem by renaming and exporting
`LLVM_PTHREAD_LIB` as part of`LLVMConfig.cmake`. I renamed `PTHREAD_LIB`
because It seemed likely to cause collisions with downstream users of
`LLVMConfig.cmake`.
llvm-svn: 294690