Don't include input and output regs in clobbers. Prefix some
identifiers with __. Add a memory constraint to __readcr3 to prevent
reordering. This constraint is heavy handed, but conservatively
correct.
Thanks to PaX Team for the suggestions.
llvm-svn: 205778
Summary:
This adds support in 'opt' to filter pass remarks emitted by
optimization passes. A new flag -pass-remarks specifies which
passes should emit a diagnostic when LLVMContext::emitOptimizationRemark
is invoked.
This will allow the front end to simply pass along the regular
expression from its own -Rpass flag when launching the backend.
Depends on D3227.
Reviewers: qcolombet
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3291
llvm-svn: 205775
Summary:
This patch adds backend support for -Rpass=, which indicates the name
of the optimization pass that should emit remarks stating when it
made a transformation to the code.
Pass names are taken from their DEBUG_NAME definitions.
When emitting an optimization report diagnostic, the lack of debug
information causes the diagnostic to use "<unknown>:0:0" as the
location string.
This is the back end counterpart for
http://llvm-reviews.chandlerc.com/D3226
Reviewers: qcolombet
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3227
llvm-svn: 205774
Before AllowShortFunctionsOnASingleLine could either be true, merging
all functions, or false, merging no functions. This patch adds a third
value "Inline", which can be used to only merge short functions defined
inline in a class, i.e.:
void f() {
return 42;
}
class C {
void f() { return 42; }
};
llvm-svn: 205760
Confusingly, the NEON fmla instructions put the accumulator first but the
scalar versions put it at the end (like the fma lib function & LLVM's
intrinsic).
This should fix PR19345, assuming there's only one issue.
llvm-svn: 205758
indirectly requires a function analysis.
This bug was reported by Jason Kim. He included a test case here:
http://reviews.llvm.org/D3312
llvm-svn: 205753
Before, we would have conditional operators where one side of the
operator would be of type RelocationTypeAMD64 and the other is of type
RelocationTypeI386. GCC would noisly warn with -Wenum-compare
diagnostic.
Instead, refactor the code so it is more like the X86 ELF object writer.
llvm-svn: 205752
SBTarget::AddModule(const char *path,
const char *triple,
const char *uuid_cstr,
const char *symfile);
If "symfile" was filled in, it would cause us to not correctly add the module. Same goes for:
SBTarget::AddModule(SBModuleSpec ...)
Where you filled in the symfile.
<rdar://problem/16529799>
llvm-svn: 205750
The IO normalizer would essentially lump I386 and AMD64 relocations
together. Relocation types with the same numeric value would then get
mapped in appropriately.
For example:
IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_I386_DIR16 both have a numeric
value of one. We would see IMAGE_REL_I386_DIR16 in obj2yaml conversions
of object files with a machine type of IMAGE_FILE_MACHINE_AMD64.
llvm-svn: 205746
Fixes PR16365 - Extremely slow compilation in -O1 and -O2.
The SD scheduler has a quadratic implementation of load clustering
which absolutely blows up compile time for large blocks with constant
pool loads. The MI scheduler has a better implementation of load
clustering. However, we have not done the work yet to completely
eliminate the SD scheduler. Some benchmarks still seem to benefit from
early load clustering, although maybe by chance.
As an intermediate term fix, I just put a nice limit on the number of
DAG users to search before finding a match. With this limit there are no
binary differences in the LLVM test suite, and the PR16365 test case
does not suffer any compile time impact from this routine.
llvm-svn: 205738
Moving these patterns from TableGen files to PerformDAGCombine()
should allow us to generate better code by eliminating unnecessary
shifts and extensions earlier.
This also fixes a bug where the MAD pattern was calling
SimplifyDemandedBits with a 24-bit mask on the first operand
even when the full pattern wasn't being matched. This occasionally
resulted in some instructions being incorrectly deleted from the
program.
v2:
- Fix bug with 64-bit mul
llvm-svn: 205731
This patch is the first part of a significant refactoring that seeks to restore
sanity to way thread safety analysis deals with capability expressions. The
current patch merely provides an outline of the structure of the new system.
It's not yet connected to the actual analysis, so there's no change in
functionality.
llvm-svn: 205728
This can actually be non-zero if you override a function from a virtual
base and you have forced the most_general pointer to member
representation.
llvm-svn: 205727
Using this file would result in an odr violation: it defines an llvm::Interval
class that conflicts with the one in Analysis/Interval.h.
llvm-svn: 205726