This removes the FrameAccess struct that was added to the interface
in D51537, since the PseudoValue from the MachineMemoryOperand
can be safely casted to a FixedStackPseudoSourceValue.
Reviewers: MatzeB, thegameg, javed.absar
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51617
llvm-svn: 341454
For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.
This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D51537
llvm-svn: 341301
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
The code that generates post-increments for Hexagon considered
integer values only. This patch adds support to generate them for
floating point values, f32 and f64.
Differential Revision: https://reviews.llvm.org/D47036
llvm-svn: 332748
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
These instructions have been around for a long time, but we
haven't supported intrinsics for them. The "new" versions use
the CSx register for the start of the buffer instead of the K
field in the Mx register.
We need to use pseudo instructions for these instructions until
after register allocation. The problem is that these instructions
allocate a M0/CS0 or M1/CS1 pair. But, we can't generate code for
the CSx set-up until after register allocation when the Mx
register has been fixed for the instruction.
There is a related clang patch.
Patch by Brendon Cahoon.
llvm-svn: 328724
The patch contains severals changes needed to pipeline an example
that was transformed so that a Phi with a subreg is converted to
copies.
The pipeliner wasn't working for a couple of reasons.
- The RecMII was 3 instead of 2 due to the extra copies.
- Copy instructions contained a latency of 1.
- The node order algorithm was not choosing the best "bottom"
node, which caused an instruction to be scheduled that had a
predecessor and successor already scheduled.
- Updated the Hexagon Machine Scheduler to check if the node is
latency bound when adding the cost for a 0-latency dependence.
The RecMII was 3 because the computation looks at the number of
nodes in the recurrence. The extra copy is an extra node but
it shouldn't increase the latency. The new RecMII computation
looks at the latency of the instructions in the recurrence. We
changed the latency of the dependence of a copy to 0. The latency
computation for the copy also checks the use of the copy (similar
to a reg_sequence).
The node order algorithm was not choosing the last instruction
in the recurrence for a bottom up traversal. This was when the
last instruction is a copy. A check was added when choosing the
instruction to check for NodeNum if the maxASAP is the same. This
means that the scheduler will not end up with another node in
the recurrence that has both a predecessor and successor already
scheduled.
The cost computation in Hexagon Machine Scheduler adds cost when
an instruction can be packetized with a zero-latency instruction.
We should only do this if the schedule is latency bound.
Patch by Brendon Cahoon.
llvm-svn: 328542
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
This is a follow-up to r325169, this time for all types, not just HVX
vector types.
Disable this by default, since it's not always safe.
llvm-svn: 326915
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
All loads of form V6_vL32b_{,cur,nt,tmp,nt_cur,nt_tmp}_{ai,pi,ppu} are
predicable on v62 (but not on v60). Mark them all as predicable in the
instruction definitions, and handle the v60 case in HII::isPredicable.
llvm-svn: 316098
The software pipeliner and the packetizer try to break dependence
between the post-increment instruction and the dependent memory
instructions by changing the base register and the offset value.
However, in some cases, the existing logic didn't work properly
and created incorrect offset value.
Patch by Jyotsna Verma.
llvm-svn: 315468
The pipeliner is generating a serial sequence that causes poor
register allocation when a post-increment instruction appears
prior to the use of the post-increment register. This occurs when
there is a circular set of dependences involved with a sequence
of instructions in the same cycle. In this case, there is no
serialization of the parallel semantics that will not cause an
additional register to be allocated.
This patch fixes the problem by changing the instructions so that
the post-increment instruction is used by the subsequent
instruction, which enables the register allocator to make a
better decision and not require another register.
Patch by Brendon Cahoon.
llvm-svn: 315466
The new format is changeAddrMode_xx_yy, where xx is the current mode,
and yy is the new one.
Old name: New name:
getBaseWithImmOffset changeAddrMode_abs_io
getAbsoluteForm changeAddrMode_io_abs
getBaseWithRegOffset changeAddrMode_io_rr
xformRegToImmOffset changeAddrMode_rr_io
getBaseWithLongOffset changeAddrMode_rr_ur
getRegShlForm changeAddrMode_ur_rr
llvm-svn: 315013
This removes the duplicate HVX instruction set for the 128-byte mode.
Single instruction set now works for both modes (64- and 128-byte).
llvm-svn: 313362
It used to return the actual field value from the instruction descriptor.
There is no reason for that, that value is not interesting in any way and
the specifics of its encoding in the descriptor should not be exposed.
llvm-svn: 313257
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787