and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
llvm-svn: 66339
get nice and happy stack traces when we crash in an optimizer or codegen. For
example, an abort put in UnswitchLoops now looks like this:
Stack dump:
0. Program arguments: clang pr3399.c -S -O3
1. <eof> parser at end of file
2. per-module optimization passes
3. Running pass 'CallGraph Pass Manager' on module 'pr3399.c'.
4. Running pass 'Loop Pass Manager' on function '@foo'
5. Running pass 'Unswitch loops' on basic block '%for.inc'
Abort
llvm-svn: 66260
arbitrary functions to be run when a crash happens. Delete
RemoveDirectoryOnSignal as it is dead and has never had clients.
Change PrintStackTraceOnErrorSignal to be implemented in terms of
AddSignalHandler.
I updated the Win32 versions of these APIs, but can't test them.
If there are any problems, I'd be happy to fix them as well.
llvm-svn: 66072
because less bytes are allocated and subobject construction is gone.
For reference how it works, see BasicBlock.h.
Btw. it is very assuring to see that somebody has invented
this ilist-embedded sentinel technique before me :-)
llvm-svn: 66026
While the patch is clearly correct in itself, it's become
apparent other places are assuming debug intrinsics are
marked as touching memory...this needs more testing.
llvm-svn: 65992
arbitrary vector sizes. Add an optional MinSplatBits parameter to specify
a minimum for the splat element size. Update the PPC target to use the
revised interface.
llvm-svn: 65899
User drivers based on llvmc must all share the initialization code.
Putting main() into libCompilerDriver is not a very good idea IMO (and ld gave
me some strange EH-related error anyway).
llvm-svn: 65825
Move the code from 'llvmc/driver' into a new CompilerDriver library, and change
the build system accordingly. Makes it easier for projects using LLVM to build
their own llvmc-based drivers.
Tested with objdir != srcdir.
llvm-svn: 65821
its sentinel. This is quite a win when a function really has a basic block.
When the function is just a declaration (and stays so) the old way did not
allocate a sentinel. So this change is most beneficial when the ratio of
function definition to declaration is high. I.e. linkers etc. Incidentally
these are the most resource demanding applications, so I expect that the
reduced malloc traffic, locality and space savings outweigh the cost of
addition of two pointers to Function.
llvm-svn: 65776
This looks dangerous, but isn't because the sentinel is accessed in special way only,
namely the Next and Prev fields of it, and these are guaranteed to exist.
llvm-svn: 65626
to more accurately describe what it does. Expand its doxygen comment
to describe what the backedge-taken count is and how it differs
from the actual iteration count of the loop. Adjust names and
comments in associated code accordingly.
llvm-svn: 65382
them are generic changes.
- Use the "fast" flag that's already being passed into the asm printers instead
of shoving it into the DwarfWriter.
- Instead of calling "MI->getParent()->getParent()" for every MI, set the
machine function when calling "runOnMachineFunction" in the asm printers.
llvm-svn: 65379
a DBG_LABEL or not. We want to fall back to the original way of emitting debug
info when we're in -O0/-fast mode.
- Add plumbing in to pass the "Fast" flag to places that need it.
- XFAIL DebugInfo/deaddebuglabel.ll. This is finding 11 labels instead of 8. I
need to investigate still.
llvm-svn: 65367
instruction. The class also consolidates the code for detecting constant
splats that's shared across PowerPC and the CellSPU backends (and might be
useful for other backends.) Also introduces SelectionDAG::getBUID_VECTOR() for
generating new BUILD_VECTOR nodes.
llvm-svn: 65296
trip count value when the original loop iteration condition is
signed and the canonical induction variable won't undergo signed
overflow. This isn't required for correctness; it just preserves
more information about original loop iteration values.
Add a getTruncateOrSignExtend method to ScalarEvolution,
following getTruncateOrZeroExtend.
llvm-svn: 64918
that has not been JIT'd yet, the callee is put on a list of pending functions
to JIT. The call is directed through a stub, which is updated with the address
of the function after it has been JIT'd. A new interface for allocating and
updating empty stubs is provided.
Add support for removing the ModuleProvider the JIT was created with, which
would otherwise invalidate the JIT's PassManager, which is initialized with the
ModuleProvider's Module.
Add support under a new ExecutionEngine flag for emitting the infomration
necessary to update Function and GlobalVariable stubs after JITing them, by
recording the address of the stub and the name of the GlobalValue. This allows
code to be copied from one address space to another, where libraries may live
at different virtual addresses, and have the stubs updated with their new
correct target addresses.
llvm-svn: 64906
(Note: Eventually, commits like this will be handled via a pre-commit hook that
does this automagically, as well as expand tabs to spaces and look for 80-col
violations.)
llvm-svn: 64827
modified in a way that may effect the trip count calculation. Change
IndVars to use this method when it rewrites pointer or floating-point
induction variables instead of using a doInitialization method to
sneak these changes in before ScalarEvolution has a chance to see
the loop. This eliminates the need for LoopPass to depend on
ScalarEvolution.
llvm-svn: 64810
U include/llvm/CodeGen/DebugLoc.h
U lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
Enable debug location generation at -Os. This goes with the reapplication of the
r63639 patch.
llvm-svn: 64715
Cleanup some warning.
Remark: when struct/class are declared differently than they are defined, this make problem for VC++ since it seems to mangle class differently that struct. These error are very hard to understand and find. So please, try to keep your definition/declaration in sync.
Only tested with VS2008. hope it does not break anything. feel free to revert.
llvm-svn: 64554
taken advantage of anywhere. Change the definition
of IntrWriteArgMem to no longer imply nocapture, and
explicitly add nocapture attributes everywhere (well,
not quite everywhere, because some of these intrinsics
did capture their arguments!). Also, make clear that
the lack of other side-effects does not exclude doing
volatile loads or stores - the atomic intrinsics do
these, yet they are all marked IntrWriteArgMem (this
change is safe because nothing exploited it).
llvm-svn: 64539
being used for atomic intrinsics, it seems the
access may be volatile. No code was exploiting
the original non-volatile definition, so only
the comment needs changing.
llvm-svn: 64464
loop induction on LP64 targets. When the induction variable is
used in addressing, IndVars now is usually able to inserst a
64-bit induction variable and eliminates the sign-extending cast.
This is also useful for code using C "short" types for
induction variables on targets with 32-bit addressing.
Inserting a wider induction variable is easy; the tricky part is
determining when trunc(sext(i)) expressions are no-ops. This
requires range analysis of the loop trip count. A common case is
when the original loop iteration starts at 0 and exits when the
induction variable is signed-less-than a fixed value; this case
is now handled.
This replaces IndVarSimplify's OptimizeCanonicalIVType. It was
doing the same optimization, but it was limited to loops with
constant trip counts, because it was running after the loop
rewrite, and the information about the original induction
variable is lost by that point.
Rename ScalarEvolution's executesAtLeastOnce to
isLoopGuardedByCond, generalize it to be able to test for
ICMP_NE conditions, and move it to be a public function so that
IndVars can use it.
llvm-svn: 64407
add efficient versions of op_begin and op_end. Up to now always those from User have been
called, which in most cases follow an indirection (OperandList) even if the exact Instruction
type is known.
llvm-svn: 64331
instruction index across each part. Instruction indices are used
to make live range queries, and live ranges can extend beyond
scheduling region boundaries.
Refactor the ScheduleDAGSDNodes class some more so that it
doesn't have to worry about this additional information.
llvm-svn: 64288
scheduling, and generalize is so that preserves state across
scheduling regions. This fixes incorrect live-range information around
terminators and labels, which are effective region boundaries.
In place of looking for terminators to anchor inter-block dependencies,
introduce special entry and exit scheduling units for this purpose.
llvm-svn: 64254
even if the underlying operand is NULL. This may happen in debugging context
within opt with partial loop unrolling (see test/Transforms/LoopUnroll/partial.ll).
After this fix I can resubmit the (backed out) r63459:
* lib/VMCore/AsmWriter.cpp: use precise accessors.
llvm-svn: 64142
suprise to some callers, e.g. register coalescer. For now, add an parameter
that tells AnalyzeBranch whether it's safe to modify the mbb. A better
solution is out there, but I don't have time to deal with it right now.
llvm-svn: 64124
Adjust derived classes to pass UnknownLoc where
a DebugLoc does not make sense. Pick one of
DebugLoc and non-DebugLoc variants to survive
for all such classes.
llvm-svn: 64000
Many targets build placeholder nodes for special operands, e.g.
GlobalBaseReg on X86 and PPC for the PIC base. There's no
sensible way to associate debug info with these. I've left
them built with getNode calls with explicit DebugLoc::getUnknownLoc operands.
I'm not too happy about this but don't see a good improvement;
I considered adding a getPseudoOperand or something, but it
seems to me that'll just make it harder to read.
llvm-svn: 63992
SelectionDAGISel::CreateScheduler, and make it just create the
scheduler. Leave running the scheduler to the higher-level code.
This makes the higher-level code a little more explicit and
easier to follow, and will help enable some future refactoring.
llvm-svn: 63944
that used this header to select a scheduling policy should
use SchedulerRegistry.h instead (llvm-gcc and clang were
updated a while ago).
llvm-svn: 63934
target directories themselves. This also means that VMCore no longer
needs to know about every target's list of intrinsics. Future work
will include converting the PowerPC target to this interface as an
example implementation.
llvm-svn: 63765
support GraphViz, I've been using the foo->dump() facility. This
patch is a minor rewrite to the SelectionDAG dump() stuff to make it a
little more helpful. The existing foo->dump() functionality does not
change; this patch adds foo->dumpr(). All of this is only useful when
running LLVM under a debugger.
llvm-svn: 63736
they are useful to analyses other than BasicAliasAnalysis.cpp. Include
the full comment for isIdentifiedObject in the header file. Thanks to
Chris for suggeseting this.
llvm-svn: 63589
information. This eliminates the need for the Flags field in MemSDNode,
so this makes LoadSDNode and StoreSDNode smaller. Also, it makes
FoldingSetNodeIDs for loads and stores two AddIntegers smaller.
llvm-svn: 63577
crashes or wrong code with codegen of large integers:
eliminate the legacy getIntegerVTBitMask and
getIntegerVTSignBit methods, which returned their
value as a uint64_t, so couldn't handle huge types.
llvm-svn: 63494
returned by getShiftAmountTy may be too small
to hold shift values (it is an i8 on x86-32).
Before and during type legalization, use a large
but legal type for shift amounts: getPointerTy;
afterwards use getShiftAmountTy, fixing up any
shift amounts with a big type during operation
legalization. Thanks to Dan for writing the
original patch (which I shamelessly pillaged).
llvm-svn: 63482
information output. However, many target specific tool chains prefer to encode
only one compile unit in an object file. In this situation, the LLVM code
generator will include debugging information entities in the compile unit
that is marked as main compile unit. The code generator accepts maximum one main
compile unit per module. If a module does not contain any main compile unit
then the code generator will emit multiple compile units in the output object
file.
[Part 1]
Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit.
Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here.
Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit.
[Part 2]
Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs.
---
This is Part 1.
llvm-svn: 63400
If a MachineInstr doesn't have a memoperand but has an opcode that
is known to load or store, assume its memory reference may alias
*anything*, including stack slots which the compiler completely
controls.
To partially compensate for this, teach the ScheduleDAG building
code to do basic getUnderlyingValue analysis. This greatly
reduces the number of instructions that require restrictive
dependencies. This code will need to be revisited when we start
doing real alias analysis, but it should suffice for now.
llvm-svn: 63370
- Modify TableGen to add the DebugLoc when calling getTargetNode.
(The light-weight wrappers are only temporary. The non-DebugLoc version will be
removed once the whole debug info stuff is finished with.)
llvm-svn: 63273
dagcombines that help it match in several more cases. Add
several more cases to test/CodeGen/X86/bt.ll. This doesn't
yet include matching for BT with an immediate operand, it
just covers more register+register cases.
llvm-svn: 63266
new isOperationLegalOrCustom, which does what isOperationLegal
previously did.
Update a bunch of callers to use isOperationLegalOrCustom
instead of isOperationLegal. In some case it wasn't obvious
which behavior is desired; when in doubt I changed then to
isOperationLegalOrCustom as that preserves their previous
behavior.
This is for the second half of PR3376.
llvm-svn: 63212
a uint64_t to verify that the value is in range for the given type,
to help catch accidental overflow. Fix a few places that relied on
getConstant implicitly truncating the value.
llvm-svn: 63128
assignment operator) were returning a copy of the bit vector, instead of a
reference! This old semantics probably did not meet the expectations.
With this patch, chained assignments happen to the right object.
llvm-svn: 63012
tidy up SDUse and related code.
- Replace the operator= member functions with a set method, like
LLVM Use has, and variants setInitial and setNode, which take
care up updating use lists, like LLVM Use's does. This simplifies
code that calls these functions.
- getSDValue() is renamed to get(), as in LLVM Use, though most
places can either use the implicit conversion to SDValue or the
convenience functions instead.
- Fix some more node vs. value terminology issues.
Also, eliminate the one remaining use of SDOperandPtr, and
SDOperandPtr itself.
llvm-svn: 62995