This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
This patch defines an interleaved-load-combine pass. The pass searches
for ShuffleVector instructions that represent interleaved loads. Matches are
converted such that they will be captured by the InterleavedAccessPass.
The pass extends LLVMs capabilities to use target specific instruction
selection of interleaved load patterns (e.g.: ld4 on Aarch64
architectures).
Differential Revision: https://reviews.llvm.org/D52653
llvm-svn: 347208
Summary:
It turns out that we need an OptimizerLast PassBuilder extension point
after all. I missed the relevance of this EP the first time. By legacy PM magic,
function passes added at this EP get added to the last _Function_ PM, which is a
feature we lost when dropping this EP for the new PM.
A key difference between this and the legacy PassManager's OptimizerLast
callback is that this extension point is not triggered at O0. Extensions
to the O0 pipeline should append their passes to the end of the overall
pipeline.
Differential Revision: https://reviews.llvm.org/D54374
llvm-svn: 346645
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344685
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
This is the LLVM side of Clang r344199.
Reviewers: davidxl, tejohnson, dlj, erik.pilkington
Subscribers: mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51249
llvm-svn: 344200
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
Add a -debugify-export option to opt. This exports per-pass `debugify`
loss statistics to a file in CSV format.
For some interesting numbers on debug value loss during an -O2 build
of the sqlite3 amalgamation, see the review thread.
Differential Revision: https://reviews.llvm.org/D49003
llvm-svn: 337787
This is a minor cleanup in preparation for a change to export DI
statistics from -check-debugify. To do that, it would be cleaner to have
a dedicated header for the debugify interface.
llvm-svn: 337786
Suppress the diagnostic for mis-sized dbg.values when a value operand is
narrower than the unsigned variable it describes. Assume that a debugger
would implicitly zero-extend these values.
llvm-svn: 336452
The checking logic should not treat artificial locations as being
somehow problematic. Producing these locations can be the desired
behavior of some passes.
See llvm.org/PR37961.
llvm-svn: 335897
It's not possible to get the fragment size of some dbg.values. Teach the
mis-sized dbg.value diagnostic to detect this scenario and bail out.
Tested with:
$ find test/Transforms -print -exec opt -debugify-each -instcombine {} \;
llvm-svn: 335695
Report an error in -check-debugify when the size of a dbg.value operand
doesn't match up with the size of the variable it describes.
Eventually this check should be moved into the IR verifier. For the
moment, it's useful to include the check in -check-debugify as a means
of catching regressions and finding existing bugs.
Here are some instances of bugs the new check finds in the -O2 pipeline
(all in InstCombine):
1) A float is used where a double is expected:
ERROR: dbg.value operand has size 32, but its variable has size 64:
call void @llvm.dbg.value(metadata float %expf, metadata !12, metadata
!DIExpression()), !dbg !15
2) An i8 is used where an i32 is expected:
ERROR: dbg.value operand has size 8, but its variable has size 32:
call void @llvm.dbg.value(metadata i8 %t4, metadata !14, metadata
!DIExpression()), !dbg !24
3) A <4 x i32> is used where something twice as large is expected
(perhaps a <4 x i64>, I haven't double-checked):
ERROR: dbg.value operand has size 128, but its variable has size 256:
call void @llvm.dbg.value(metadata <4 x i32> %4, metadata !40, metadata
!DIExpression()), !dbg !95
Differential Revision: https://reviews.llvm.org/D48408
llvm-svn: 335682
When checking the debug info in a module, don't treat a missing
dbg.value as an error. The dbg.value may simply have been DCE'd, in
which case the debugger has enough information to display the variable
as <optimized out>.
llvm-svn: 335647
Before this patch, debugify would insert debug value intrinsics before the
terminating instruction in a block. This had the advantage of being simple,
but was a bit too simple/unrealistic.
This patch teaches debugify to insert debug values immediately after their
operand defs. This enables better testing of the compiler.
For example, with this patch, `opt -debugify-each` is able to identify a
vectorizer DI-invariance bug fixed in llvm.org/PR32761. In this bug, the
vectorizer produced different output with/without debug info present.
Reverting Davide's bugfix locally, I see:
$ ~/scripts/opt-check-dbg-invar.sh ./bin/opt \
.../SLPVectorizer/AArch64/spillcost-di.ll -slp-vectorizer
Comparing: -slp-vectorizer .../SLPVectorizer/AArch64/spillcost-di.ll
Baseline: /var/folders/j8/t4w0bp8j6x1g6fpghkcb4sjm0000gp/T/tmp.iYYeL1kf
With DI : /var/folders/j8/t4w0bp8j6x1g6fpghkcb4sjm0000gp/T/tmp.sQtQSeet
9,11c9,11
< %5 = getelementptr inbounds %0, %0* %2, i64 %0, i32 1
< %6 = bitcast i64* %4 to <2 x i64>*
< %7 = load <2 x i64>, <2 x i64>* %6, align 8, !tbaa !0
---
> %5 = load i64, i64* %4, align 8, !tbaa !0
> %6 = getelementptr inbounds %0, %0* %2, i64 %0, i32 1
> %7 = load i64, i64* %6, align 8, !tbaa !5
12a13
> store i64 %5, i64* %8, align 8, !tbaa !0
14,15c15
< %10 = bitcast i64* %8 to <2 x i64>*
< store <2 x i64> %7, <2 x i64>* %10, align 8, !tbaa !0
---
> store i64 %7, i64* %9, align 8, !tbaa !5
:: Found a test case ^
Running this over the *.ll files in tree, I found four additional examples
which compile differently with/without DI present. I plan on filing bugs for
these.
llvm-svn: 334118
The -check-debugify pass should preserve all analyses. Otherwise, it may
invalidate an optional analysis and inadvertently alter codegen.
The test case is reduced from deopt-bundle.ll. The result of `opt -O1`
on this file would differ when -debugify-each was toggled. That happened
because CheckDebugify failed to preserve GlobalsAA.
Thanks to Davide Italiano for his help chasing this down!
llvm-svn: 333959
After r333856, opt -debugify would just stop emitting debug value
intrinsics after encountering a musttail call. This wasn't sufficient to
avoid verifier failures.
Debug value intrinicss for all instructions preceding a musttail call
must also be emitted before the musttail call.
llvm-svn: 333866
Applying synthetic debug info before the bitcode writer pass has no
testing-related purpose. This commit prevents that from happening.
It also adds tests which check that IR produced with/without
-debugify-each enabled is identical after stripping. This makes it
possible to check that individual passes (or full pipelines) are
invariant to debug info.
llvm-svn: 333861
The -strip-module-flags option strips llvm.module.flags metadata from a
module at the beginning of the opt pipeline.
This will be used to test whether the output of a pass is debug info
(DI) invariant.
E.g, after applying synthetic debug info to a test case, we'd like to
strip out all DI-related metadata and check that the final IR is
identical to a baseline file without any DI applied, to check that
optimizations aren't inhibited by debug info.
llvm-svn: 333860
Setting the "Debug Info Version" module flag makes it possible to pipe
synthetic debug info into llc, which is useful for testing backends.
llvm-svn: 333237
Currently debugify prints it's output to stdout,
with this patch all the output generated goes to stderr.
This change lets us use debugify without taking away
the ability to pipe the output to other llvm tools.
llvm-svn: 332642
This adds a -debugify-each mode to opt which, when enabled, wraps each
{Module,Function}Pass in a pipeline with logic to add, check, and strip
synthetic debug info for testing purposes.
This mode can be used to test complex pipelines for debug info bugs, or
to collect statistics about the number of debug values & locations lost
throughout various stages of a pipeline.
Patch by Son Tuan Vu!
Differential Revision: https://reviews.llvm.org/D46525
llvm-svn: 332312
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
As demonstrated by the regression tests added in this patch, the
following cases are valid cases:
1. A Function with no DISubprogram attached, but various debug info
related to its instructions, coming, for instance, from an inlined
function, also defined somewhere else in the same module;
2. ... or coming exclusively from the functions inlined and eliminated
from the module entirely.
The ValueMap shared between CloneFunctionInto calls within CloneModule
needs to contain identity mappings for all of the DISubprogram's to
prevent them from being duplicated by MapMetadata / RemapInstruction
calls, this is achieved via DebugInfoFinder collecting all the
DISubprogram's. However, CloneFunctionInto was missing calls into
DebugInfoFinder for functions w/o DISubprogram's attached, but still
referring DISubprogram's from within (case 1). This patch fixes that.
The fix above, however, exposes another issue: if a module contains a
DISubprogram referenced only indirectly from other debug info
metadata, but not attached to any Function defined within the module
(case 2), cloning such a module causes a DICompileUnit duplication: it
will be moved in indirecty via a DISubprogram by DebugInfoFinder first
(because of the first bug fix described above), without being
self-mapped within the shared ValueMap, and then will be copied during
named metadata cloning. So this patch makes sure DebugInfoFinder
visits DICompileUnit's referenced from DISubprogram's as it goes w/o
re-processing llvm.dbg.cu list over and over again for every function
cloned, and makes sure that CloneFunctionInto self-maps
DICompileUnit's referenced from the entire function, not just its own
DISubprogram attached that may also be missing.
The most convenient way of tesing CloneModule I found is to rely on
CloneModule call from `opt -run-twice`, instead of writing tedious
unit tests. That feature has a couple of properties that makes it hard
to use for this purpose though:
1. CloneModule doesn't copy source filename, making `opt -run-twice`
report it as a difference.
2. `opt -run-twice` does the second run on the original module, not
its clone, making the result of cloning completely invisible in opt's
actual output with and without `-run-twice` both, which directly
contradicts `opt -run-twice`s own error message.
This patch fixes this as well.
Reviewed By: aprantl
Reviewers: loladiro, GorNishanov, espindola, echristo, dexonsmith
Subscribers: vsk, debug-info, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45593
llvm-svn: 330069
We have a few functions that virtually all command wants to run on
process startup/shutdown. This patch adds InitLLVM class to do that
all at once, so that we don't need to copy-n-paste boilerplate code
to each llvm command's main() function.
Differential Revision: https://reviews.llvm.org/D45602
llvm-svn: 330046
These aren't the .def style files used in LLVM that require a macro
defined before their inclusion - they're just basic non-modular includes
to stamp out command line flag variables.
llvm-svn: 329840
Summary:
Add a new plugin API. This closes the gap between pass registration and out-of-tree passes for the new PassManager.
Unlike with the existing API, interaction with a plugin is always
initiated from the tools perspective. I.e., when a plugin is loaded, it
resolves and calls a well-known symbol `llvmGetPassPluginInfo` to obtain
details about the plugin. The fundamental motivation is to get rid of as
many global constructors as possible. The API exposed by the plugin
info is kept intentionally minimal.
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: bollu, grosser, lksbhm, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D35258
llvm-svn: 329273
If a function doesn't have an exact definition, don't apply debugify
metadata as it triggers a DIVerifier failure.
The issue is that it's invalid to have DILocations inside a DISubprogram
which isn't a definition ("scope points into the type hierarchy!").
llvm-svn: 325036
Sometimes users do not specify data layout in LLVM assembly and let llc set the
data layout by target triple after loading the LLVM assembly.
Currently the parser checks alloca address space no matter whether the LLVM
assembly contains data layout definition, which causes false alarm since the
default data layout does not contain the correct alloca address space.
The parser also calls verifier to check debug info and updating invalid debug
info. Currently there is no way to let the verifier to check debug info only.
If the verifier finds non-debug-info issues the parser will fail.
For llc, the fix is to remove the check of alloca addr space in the parser and
disable updating debug info, and defer the updating of debug info and
verification to be after setting data layout of the IR by target.
For other llvm tools, since they do not override data layout by target but
instead can override data layout by a command line option, an argument for
overriding data layout is added to the parser. In cases where data layout
overriding is necessary for the parser, the data layout can be provided by
command line.
Differential Revision: https://reviews.llvm.org/D41832
llvm-svn: 323826