Add support to lld to use Text Based API stubs for linking. This is
support is incomplete not filtering out platforms. It also does not
account for architecture specific API handling and potentially does not
correctly handle trees of re-exports with inlined libraries being
treated as direct children of the top level library.
Use the default target triple configured by the user to determine the
default architecture for `ld64.lld`. Stash the architecture in the
configuration as when linking against TBDs, we will need to filter out
the symbols based upon the architecture. Treat the Haswell slice as it
is equivalent to `x86_64` but with the extra Haswell extensions (e.g.
AVX2, FMA3, BMI1, etc). This will make it easier to add new
architectures in the future.
This change also changes the failure mode where an invalid `-arch`
parameter will result in the linker exiting without further processing.
This merges the static and shared library and behaves as if
`-search_paths_first` was specified which is also the default behaviour
on ld64 (and now lld). Unify the paths, and use `llvm::sys::path` to
deal with the path to be truly agnostic to the host.
If both a.a and b.so define foo
```
ld.bfd -u foo a.a b.so # foo is defined
ld.bfd a.a b.so -u foo # foo is defined
ld.bfd -u foo b.so a.a # foo is undefined (provided at runtime by b.so)
ld.bfd b.so a.a -u foo # foo is undefined (provided at runtime by b.so)
```
In all cases we make foo undefined in the output. I tend to think the
GNU ld behavior makes more sense.
* In their model, they have to treat -u as a fake object file with an
undefined symbol before all input files, otherwise the first archive would not be fetched.
* Following their behavior allows us to drop a --warn-backrefs special case.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D81052
This is a very basic static library search addition. This is the pre-Xcode4
behaviour of searching all paths for the shared version before searching for
the static version of the library. This behaviour is supposed to be inverted
with `-search_paths_first` being the default. This adds the library search
with the intention of providing the setup to merge the paths into one path
and making it controllable by `OPT_search_paths_first`.
The LLVM code base already uses C++14, use std::make_unique
to avoid the explicit constructor invocation via new and to avoid
spelling out the type twice.
ld64 provides the `-search_path_firsts` which will search each path in
the library search path order for both `lib[name].dylib`, `lib[name].a`
before moving on (searching all paths for the dylib and then falling
back to the static library if a shared library was not found).
This option has been the default for a long time, but the command line
flag still exists. Ignore it for compatibility.
--no-allow-shlib-undefined (enabled by default when linking an
executable) rejects unresolved references in shared objects.
Users may be confused by the common diagnostics of unresolved symbols in
object files (LLD: "undefined symbol: foo"; GNU ld/gold: "undefined reference to")
Learn from GCC/clang " [-Wfoo]": append the option name to the
diagnostics. Users can find relevant information by searching
"--no-allow-shlib-undefined". It should also be obvious to them that
the positive form --allow-shlib-undefined can suppress the error.
Also downgrade the error to a warning if --noinhibit-exec is used (compatible
with GNU ld and gold).
Reviewed By: grimar, psmith
Differential Revision: https://reviews.llvm.org/D81028
Previously, the SpecificAllocator was a static local in the `make<T>`
function template. Using static locals is nice because they are only
constructed and registered if they are accessed. However, if there are
multiple calls to make<> with different constructor parameters, we would
get multiple static local variable instances. This is undesirable and
leads to extra memory allocations. I noticed there were two sources of
DefinedRegular allocations while checking heap profiles.
My test refactoring in D80217 seems to have caused yaml2obj to emit
unaligned nlist_64 structs, causing ASAN'd lld to be unhappy. I don't
think this is an issue with yaml2obj though -- llvm-mc also seems to
emit unaligned nlist_64s. This diff makes lld able to safely do aligned
reads under ASAN builds while hopefully creating no overhead for regular
builds on architectures that support unaligned reads.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D80414
For consistency.
The no-id-dylib test was originally referencing the Inputs/ folder via a
relative path. Instead of updating that path, I decided to make the test
self-contained.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D80217
That's what ld64 uses for 64-bit targets. I figured it's best to make
this change sooner rather than later since a bunch of our tests are
relying on hardcoded addresses that depend on this value.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D80177
I considered making a `Target::validate()` method, but I wasn't sure how
I felt about the overhead of doing yet another switch-dispatch on the
relocation type, so I put the validation in `relocateOne` instead...
might be a bit of a micro-optimization, but `relocateOne` does assume
certain things about the relocations it gets, and this error handling
makes that explicit, so it's not a totally unreasonable code
organization.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D80049
MIPS 64-bit ABI does not provide special PC-relative relocation like
R_MIPS_PC32 in 32-bit case. But we can use a "chain of relocation"
defined by N64 ABIs. In that case one relocation record might contain up
to three relocations which applied sequentially. Width of a final relocation
mask applied to the result of relocation depends on the last relocation
in the chain. In case of 64-bit PC-relative relocation we need the following
chain: `R_MIPS_PC32 | R_MIPS_64`. The first relocation calculates an
offset, but does not truncate the result. The second relocation just
apply calculated result as a 64-bit value.
The 64-bit PC-relative relocation might be useful in generation of
`.eh_frame` sections to escape passing `-Wl,-z,notext` flags to linker.
Differential Revision: https://reviews.llvm.org/D80390
This patch adds clang options:
-fbasic-block-sections={all,<filename>,labels,none} and
-funique-basic-block-section-names.
LLVM Support for basic block sections is already enabled.
+ -fbasic-block-sections={all, <file>, labels, none} : Enables/Disables basic
block sections for all or a subset of basic blocks. "labels" only enables
basic block symbols.
+ -funique-basic-block-section-names: Enables unique section names for
basic block sections, disabled by default.
Differential Revision: https://reviews.llvm.org/D68049
First, do not reserve numSections in the Chunks array. In cases where
there are many non-prevailing sections, this will overallocate memory
which will not be used.
Second, free the memory for sparseChunks after initializeSymbols. After
that, it is never used.
This saves 50MB of 627MB for my use case without affecting performance.
The inlinees section contains references to the file checksum table. The
file checksum table in the PDB must have the same layout as the file
checksum table in the object file, so all the existing file id
references should stay valid.
Previously, we would do this:
for all inlined functions:
- lookup filename from checksum and string table
- make that filename absolute
- look up the new file id for that filename up in the new checksum
table
This lead to pdbMakeAbsolute and remove_dots ending up in the hot path.
We should only need to absolutify the source path once, not once every
time we process an inline function from that source file.
This speeds up linking chrome PGO stage 1 net_unittests.exe from 9.203s
to 8.500s (-7.6%). Looking just at time to process symbol records, it
goes from ~2000ms to ~1300ms, which is consistent with the overall
speedup of about 700ms. This will be less noticeable in debug builds,
which have fewer inlined functions records.
GNU ld from binutils 2.35 onwards will likely support
--export-dynamic-symbol but with different semantics.
https://sourceware.org/pipermail/binutils/2020-May/111302.html
Differences:
1. -export-dynamic-symbol is not supported
2. --export-dynamic-symbol takes a glob argument
3. --export-dynamic-symbol can suppress binding the references to the definition within the shared object if (-Bsymbolic or -Bsymbolic-functions)
4. --export-dynamic-symbol does not imply -u
I don't think the first three points can affect any user.
For the fourth point, Not implying -u can lead to some archive members unfetched.
Add -u foo to restore the previous behavior.
Exact semantics:
* -no-pie or -pie: matched non-local defined symbols will be added to the dynamic symbol table.
* -shared: matched non-local STV_DEFAULT symbols will not be bound to definitions within the shared object
even if they would otherwise be due to -Bsymbolic, -Bsymbolic-functions, or --dynamic-list.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D80487
LLD supports both REL and RELA for static relocations, but emits either
of REL and RELA for dynamic relocations. The relocation entry format is
specified by each psABI.
musl ld.so supports both REL and RELA. For such ld.so implementations,
REL (.rel.dyn .rel.plt) has size benefits even if the psABI chooses RELA:
sizeof(Elf64_Rel)=16 < sizeof(Elf64_Rela)=24.
* COPY, GLOB_DAT and J[U]MP_SLOT always have 0 addend. A ld.so
implementation does not need to read the implicit addend.
REL is strictly better.
* A RELATIVE has a non-zero addend. Such relocations can be packed
compactly with the RELR relocation entry format, which is out of scope
of this patch.
* For other dynamic relocation types (e.g. symbolic relocation R_X86_64_64),
a ld.so implementation needs to read the implicit addend. REL may have
minor performance impact, because reading implicit addends forces
random access reads instead of being able to blast out a bunch of
writes while chasing the relocation array.
This patch adds -z rel and -z rela to change the relocation entry format
for dynamic relocations. I have tested that a -z rel produced x86-64
executable works with musl ld.so
-z rela may be useful for debugging purposes on processors whose psABIs
specify REL as the canonical format: addends can be easily read by a tool.
Reviewed By: grimar, mcgrathr
Differential Revision: https://reviews.llvm.org/D80496
Previously in the object format we punted on this and simply wrote
zeros (and didn't include the function in the elem segment). With
this change we write a meaningful value which is the segment
relative table index of the associated function.
This matches the that wasm-ld produces in `-r` mode. This inconsistency
between the output the MC object writer and the wasm-ld object
writer could cause warnings to be emitted when reading back in the
output of `wasm-ld -r`. See:
https://github.com/emscripten-core/emscripten/issues/11217
This only applies to this one relocation type which is only generated
when compiling in PIC mode.
Differential Revision: https://reviews.llvm.org/D80774
When we originally wrote these tests we didn't have a stable and
fleshed out assembly format. Now we do so we should prefer that
over llvm ir for lld tests to avoid including more part of llvm
than necessary in order to run the test.
This change converts just 30 out of about 130 test files. More to
come when I have some more time.
Differential Revision: https://reviews.llvm.org/D80361
Summary:
Count the per-module number of basic blocks when the module summary is computed
and sum them up during Thin LTO indexing.
This is used to estimate the working set size under the partial sample PGO.
This is split off of D79831.
Reviewers: davidxl, espindola
Subscribers: emaste, inglorion, hiraditya, MaskRay, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80403
In D34993, we discussed and concluded that we should drop `__real_
symbol from the symbol table, but I did the opposite in D50569.
This patch is to drop `__real_` symbol.
MaskRay's note: omitting `__real_` is important if it is undefined:
otherwise a subsequent link may error due to the undefined `__real_` in .dynsym
Differential Revision: https://reviews.llvm.org/D51283
Bazel created interface shared objects (.ifso) may be misaligned. We use
llvm::support::detail::packed_endian_specific_integral under the hood
which allows reading of misaligned values, so there is not a need to
diagnose (in LLD we don't intend to support sophisticated parsing for
SHT_GNU_*).
In the 64-bit ELF V2 API Specification: Power Architecture, 2.3.3.1. GPR
Save and Restore Functions defines some special functions which may be
referenced by GCC produced assembly (LLVM does not reference them).
With GCC -Os, when the number of call-saved registers exceeds a certain
threshold, GCC generates `_savegpr0_* _restgpr0_*` calls and expects the
linker to define them. See
https://sourceware.org/pipermail/binutils/2002-February/017444.html and
https://sourceware.org/pipermail/binutils/2004-August/036765.html . This
is weird because libgcc.a would be the natural place. However, the linker
generation approach has the advantage that the linker can generate
multiple copies to avoid long branch thunks. We don't consider the
advantage significant enough to complicate our trunk implementation, so
we take a simple approach.
* Check whether `_savegpr0_{14..31}` are used
* If yes, define needed symbols and add an InputSection with the code sequence.
`_savegpr1_*` `_restgpr0_*` and `_restgpr1_*` are similar.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D79977
An undefined symbol in a shared object can be versioned, like `f@v1`.
We currently insert `f` as an Undefined into the symbol table, but we
should insert `f@v1` instead.
The string `v1` is inferred from SHT_GNU_versym and SHT_GNU_verneed.
This patch implements the functionality.
Failing to do this can cause two issues:
* If a versioned symbol referenced by a shared object is defined in the
executable, we will fail to export it.
* If a versioned symbol referenced by a shared object in another object
file, --no-allow-shlib-undefined may spuriously report an
"undefined reference to " error. See https://bugs.llvm.org/show_bug.cgi?id=44842
(Linking -lfftw3 -lm on Arch Linux can cause
`undefined reference to __log_finite`)
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D80059
Summary:
This patch fixes a bug where initialization code for .bss segments was
emitted in the memory initialization function even though the .bss
segments were discounted in the datacount section and omitted in the
data section. This was producing invalid binaries due to out-of-bounds
segment indices on the memory.init and data.drop instructions that
were trying to operate on the nonexistent .bss segments.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80354
Summary:
This is a pre-requisite to parallelizing PDB symbol and type merging.
Currently this timer usage would not be thread safe.
Reviewers: aganea, MaskRay
Subscribers: jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80298
Summary:
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.
The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.
We exercise this functionality in our tests by using order files that
rearrange those symbols.
Depends on D79668.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Reviewed By: smeenai
Subscribers: thakis, llvm-commits, pcc, ruiu
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79926
Note, we still name a preempted SharedSymbol "shared definition",
instead of "reference" as printed by GNU ld. This difference should not matter.
```
// GNU ld
ld.bfd: t: definition of f@v1
ld.bfd: t.so: reference to f@v1
```
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D80143
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.
The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.
We exercise this functionality in our tests by using order files that
rearrange those symbols.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D79926
The order file indicates how input sections should be sorted within each
output section, based on the symbols contained within those sections.
This diff sets the stage for implementing and testing
`.subsections_via_symbols`, where we will break up InputSections by each
symbol and sort them more granularly.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D79668