HandlePHINodesInSuccessorBlocks that works FastISel-style. This
allows PHI nodes to be updated correctly while using FastISel.
This also involves some code reorganization; ValueMap and
MBBMap are now members of the FastISel class, so they needn't
be passed around explicitly anymore. Also, SelectInstructions
is changed to SelectInstruction, and only does one instruction
at a time.
llvm-svn: 55746
class hold a MachineRegisterInfo member, and make the
MachineBasicBlock be passed in to SelectInstructions rather
than the FastISel constructor.
llvm-svn: 55076
hook for each way in which a result type can be
legalized (promotion, expansion, softening etc),
just use one: ReplaceNodeResults, which returns
a node with exactly the same result types as the
node passed to it, but presumably with a bunch of
custom code behind the scenes. No change if the
new LegalizeTypes infrastructure is not turned on.
llvm-svn: 53137
Added abstract class MemSDNode for any Node that have an associated MemOperand
Changed atomic.lcs => atomic.cmp.swap, atomic.las => atomic.load.add, and
atomic.lss => atomic.load.sub
llvm-svn: 52706
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
llvm-svn: 52044
Move platform independent code (lowering of possibly overwritten
arguments, check for tail call optimization eligibility) from
target X86ISelectionLowering.cpp to TargetLowering.h and
SelectionDAGISel.cpp.
Initial PowerPC tail call implementation:
Support ppc32 implemented and tested (passes my tests and
test-suite llvm-test).
Support ppc64 implemented and half tested (passes my tests).
On ppc tail call optimization is performed if
caller and callee are fastcc
call is a tail call (in tail call position, call followed by ret)
no variable argument lists or byval arguments
option -tailcallopt is enabled
Supported:
* non pic tail calls on linux/darwin
* module-local tail calls on linux(PIC/GOT)/darwin(PIC)
* inter-module tail calls on darwin(PIC)
If constraints are not met a normal call will be emitted.
A test checking the argument lowering behaviour on x86-64 was added.
llvm-svn: 50477
- Make targetlowering.h fit in 80 cols.
- Make LowerAsmOperandForConstraint const.
- Make lowerXConstraint -> LowerXConstraint
- Make LowerXConstraint return a const char* instead of taking a string byref.
llvm-svn: 50312
optimized x86-64 (and x86) calls so that they work (... at least for
my test cases).
Should fix the following problems:
Problem 1: When i introduced the optimized handling of arguments for
tail called functions (using a sequence of copyto/copyfrom virtual
registers instead of always lowering to top of the stack) i did not
handle byval arguments correctly e.g they did not work at all :).
Problem 2: On x86-64 after the arguments of the tail called function
are moved to their registers (which include ESI/RSI etc), tail call
optimization performs byval lowering which causes xSI,xDI, xCX
registers to be overwritten. This is handled in this patch by moving
the arguments to virtual registers first and after the byval lowering
the arguments are moved from those virtual registers back to
RSI/RDI/RCX.
llvm-svn: 49584
on any current target and aren't optimized in DAGCombiner. Instead
of using intermediate nodes, expand the operations, choosing between
simple loads/stores, target-specific code, and library calls,
immediately.
Previously, the code to emit optimized code for these operations
was only used at initial SelectionDAG construction time; now it is
used at all times. This fixes some cases where rep;movs was being
used for small copies where simple loads/stores would be better.
This also cleans up code that checks for alignments less than 4;
let the targets make that decision instead of doing it in
target-independent code. This allows x86 to use rep;movs in
low-alignment cases.
Also, this fixes a bug that resulted in the use of rep;stos for
memsets of 0 with non-constant memory size when the alignment was
at least 4. It's better to use the library in this case, which
can be significantly faster when the size is large.
This also preserves more SourceValue information when memory
intrinsics are lowered into simple loads/stores.
llvm-svn: 49572
For x86, if sse2 is available, it's not a good idea since cvtss2sd is slower than a movsd load and it prevents load folding. On x87, it's important to shrink fp constant since fldt is very expensive.
llvm-svn: 47931
calls. Before arguments that could overwrite each other were
explicitly lowered to a stack slot, not giving the register allocator
a chance to optimize. Now a sequence of copyto/copyfrom virtual
registers ensures that arguments are loaded in (virtual) registers
before they are lowered to the stack slot (and might overwrite each
other). Also parameter stack slots are marked mutable for
(potentially) tail calling functions.
llvm-svn: 47593