This knob is useful for downstream users who want that some of their
libc functions to not be intercepted.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D97740
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (LLD 13 (D96914); GNU ld 2.37 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker does not let `__start_/__stop_` references retain their sections.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on COFF/Mach-O are not affected.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D97649
This patch modifies the x86_64 XRay trampolines to fix the CFI information
generated by the assembler. One of the main issues in correcting the CFI
directives is the `ALIGNED_CALL_RAX` macro, which makes the CFA dependent on
the alignment of the stack. However, this macro is not really necessary because
some additional assumptions can be made on the alignment of the stack when the
trampolines are called. The code has been written as if the stack is guaranteed
to be 8-bytes aligned; however, it is instead guaranteed to be misaligned by 8
bytes with respect to a 16-bytes alignment. For this reason, always moving the
stack pointer by 8 bytes is sufficient to restore the appropriate alignment.
Trampolines that are called from within a function as a result of the builtins
`__xray_typedevent` and `__xray_customevent` are necessarely called with the
stack properly aligned so, in this case too, `ALIGNED_CALL_RAX` can be
eliminated.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49060
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96785
compiler-rt needs to use standalone build because of the assumptions
made by its build, but other runtimes can use non-standalone build.
Differential Revision: https://reviews.llvm.org/D97575
compiler-rt needs to use standalone build because of the assumptions
made by its build, but other runtimes can use non-standalone build.
Differential Revision: https://reviews.llvm.org/D97575
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (D96914 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker no longer lets `__start_/__stop_` references retain them.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on other COFF/Mach-O are not affected.
Differential Revision: https://reviews.llvm.org/D97649
OSSpinLock is deprecated, so we are switching to `os_unfair_lock`. However, `os_unfair_lock` isn't available on older OSs, so we keep `OSSpinLock` as fallback.
Also change runtime assumption check to static since they only ever check constant values.
rdar://69588111
Reviewed By: delcypher, yln
Differential Revision: https://reviews.llvm.org/D97509
They were added so that if no metadata section is present,
`__start_llvm_prf_*` references would not cause "undefined symbol"
errors. By switching to undefined weak symbols in D96936, the dummy
sections are not needed.
This patch is also needed to work around
https://sourceware.org/bugzilla/show_bug.cgi?id=27490
Differential Revision: https://reviews.llvm.org/D97648
This prevents from getting THP ranges more and more.
Did not see any issues in practice, just found this by code review.
Reviewed By: eugenis, vitalybuka
Differential Revision: https://reviews.llvm.org/D97593
This reverts commit 680f836c2f.
Disable the non-default-rounding-mode scalbn[f] tests when we're using
the MSVC libraries.
Differential Revision: https://reviews.llvm.org/D91841
This would cause linking errors after https://reviews.llvm.org/D97483
that introduced new prefixes for ABI wrappers with origin tracking mode.
We will renable this after the full origin tracking is checked in.
As of 4f395db86b which contains updates to
-Wfree-nonheap-object, a line in this test will trigger the warning. This
particular line is ok though since it's meant to test a free on a bad pointer.
Differential Revision: https://reviews.llvm.org/D97516
This is a part of https://reviews.llvm.org/D95835.
Each customized function has two wrappers. The
first one dfsw is for the normal shadow propagation. The second one dfso is used
when origin tracking is on. It calls the first one, and does additional
origin propagation. Which one to use can be decided at instrumentation
time. This is to ensure minimal additional overhead when origin tracking
is off.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97483
DFSan at store does store shadow data; store app data; and at load does
load shadow data; load app data.
When an application data is atomic, one overtainting case is
thread A: load shadow
thread B: store shadow
thread B: store app
thread A: load app
If the application address had been used by other flows, thread A reads
previous shadow, causing overtainting.
The change is similar to MSan's solution.
1) enforce ordering of app load/store
2) load shadow after load app; store shadow before shadow app
3) do not track atomic store by reseting its shadow to be 0.
The last one is to address a case like this.
Thread A: load app
Thread B: store shadow
Thread A: load shadow
Thread B: store app
This approach eliminates overtainting as a trade-off between undertainting
flows via shadow data race.
Note that this change addresses only native atomic instructions, but
does not support builtin libcalls yet.
https://llvm.org/docs/Atomics.html#libcalls-atomic
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97310
This CL introduces configuration options to allow pointers to be
compacted in the thread-specific caches and transfer batches. This
offers the possibility to have them use 32-bit of space instead of
64-bit for the 64-bit Primary, thus cutting the size of the caches
and batches by nearly half (and as such the memory used in size
class 0). The cost is an additional read from the region information
in the fast path.
This is not a new idea, as it's being used in the sanitizer_common
64-bit primary. The difference here is that it is configurable via
the allocator config, with the possibility of not compacting at all.
This CL enables compacting pointers in the Android and Fuchsia default
configurations.
Differential Revision: https://reviews.llvm.org/D96435
Fix a buffer overrun that can occur when parsing '%c' at the end of a
filename pattern string.
rdar://74571261
Reviewed By: kastiglione
Differential Revision: https://reviews.llvm.org/D97239
Define inline versions of __compiler_rt_fmax* and __compiler_rt_scalbn*
rather than depend on the versions in libm. As with
__compiler_rt_logbn*, these functions are only defined for single,
double, and quad precision (binary128).
Fixes PR32279 for targets using only these FP formats (e.g. Android
on arm/arm64/x86/x86_64).
For single and double precision, on AArch64, use __builtin_fmax[f]
instead of the new inline function, because the builtin expands to the
AArch64 fmaxnm instruction.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D91841
Add support for the new crash reporter api if the headers are available. Falls back to the old API if they are not available. This change was based on [[ 0164d546d2/llvm/lib/Support/PrettyStackTrace.cpp (L111) | /llvm/lib/Support/PrettyStackTrace.cpp ]]
There is a lit for this behavior here: https://reviews.llvm.org/D96737 but is not included in this diff because it is potentially flaky.
rdar://69767688
Reviewed By: delcypher, yln
Commited by Dan Liew on behalf of Emily Shi.
Differential Revision: https://reviews.llvm.org/D96830
Added a lit test that finds its corresponding crash log and checks to make sure it has asn output under `Application Specific Information`.
This required adding two python commands:
- `get_pid_from_output`: takes the output from the asan instrumentation and parses out the process ID
- `print_crashreport_for_pid`: takes in the pid of the process and the file name of the binary that was run and prints the contents of the corresponding crash log.
This test was added in preparation for changing the integration with crash reporter from the old api to the new api, which is implemented in a subsequent commit.
rdar://69767688
Reviewed By: delcypher
Commited by Dan Liew on behalf of Emily Shi.
Differential Revision: https://reviews.llvm.org/D96737
/home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_value.cpp:77:25: runtime error: left shift of 0x0000000000000000fffffffffffffffb by 96 places cannot be represented in type '__int128'
#0 0x7ffff754edfe in __ubsan::Value::getSIntValue() const /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_value.cpp:77
#1 0x7ffff7548719 in __ubsan::Value::isNegative() const /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_value.h:190
#2 0x7ffff7542a34 in handleShiftOutOfBoundsImpl /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_handlers.cpp:338
#3 0x7ffff75431b7 in __ubsan_handle_shift_out_of_bounds /home/marxin/Programming/gcc2/libsanitizer/ubsan/ubsan_handlers.cpp:370
#4 0x40067f in main (/home/marxin/Programming/testcases/a.out+0x40067f)
#5 0x7ffff72c8b24 in __libc_start_main (/lib64/libc.so.6+0x27b24)
#6 0x4005bd in _start (/home/marxin/Programming/testcases/a.out+0x4005bd)
Differential Revision: https://reviews.llvm.org/D97263
Depending on the order in which lld and compiler-rt projects are
processed by CMake, `TARGET lld` might evaluate to `TRUE` or `FALSE`
even though `lld-available` lit stanza is always set because lld is
being built. We check whether lld project is enabled instead which
is used by other compiler-rt tests.
The ideal solution here would be to use CMake generator expressions,
but those cannot be used for dependencies yet, see:
https://gitlab.kitware.com/cmake/cmake/-/issues/19467
Differential Revision: https://reviews.llvm.org/D97256
This patch enhances the secondary allocator to be able to detect buffer
overflow, and (on hardware supporting memory tagging) use-after-free
and buffer underflow.
Use-after-free detection is implemented by setting memory page
protection to PROT_NONE on free. Because this must be done immediately
rather than after the memory has been quarantined, we no longer use the
combined allocator quarantine for secondary allocations. Instead, a
quarantine has been added to the secondary allocator cache.
Buffer overflow detection is implemented by aligning the allocation
to the right of the writable pages, so that any overflows will
spill into the guard page to the right of the allocation, which
will have PROT_NONE page protection. Because this would require the
secondary allocator to produce a header at the correct position,
the responsibility for ensuring chunk alignment has been moved to
the secondary allocator.
Buffer underflow detection has been implemented on hardware supporting
memory tagging by tagging the memory region between the start of the
mapping and the start of the allocation with a non-zero tag. Due to
the cost of pre-tagging secondary allocations and the memory bandwidth
cost of tagged accesses, the allocation itself uses a tag of 0 and
only the first four pages have memory tagging enabled.
Differential Revision: https://reviews.llvm.org/D93731
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
When compiling with ccache, compiler commands get split into smaller steps
and clang's default -Wunused-command-line-argument complains about unused
include directory arguments. In combination -Werror, compilation aborts.
If CMAKE_C_FLAGS contains -Wno-unused-command-line-argument or
-Wno-error=unused-command-line-argument, the latter flag is passed into the
build script.
This is a re-commit. The previous version was reverted because of failing
tests.
Differential Revision: https://reviews.llvm.org/D96762
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
When adding this function in https://reviews.llvm.org/D68794 I did not
notice that internal_prctl has the API of the syscall to prctl rather
than the API of the glibc (posix) wrapper.
This means that the error return value is not necessarily -1 and that
errno is not set by the call.
For InitPrctl this means that the checks do not catch running on a
kernel *without* the required ABI (not caught since I only tested this
function correctly enables the ABI when it exists).
This commit updates the two calls which check for an error condition to
use internal_iserror. That function sets a provided integer to an
equivalent errno value and returns a boolean to indicate success or not.
Tested by running on a kernel that has this ABI and on one that does
not. Verified that running on the kernel without this ABI the current
code prints the provided error message and does not attempt to run the
program. Verified that running on the kernel with this ABI the current
code does not print an error message and turns on the ABI.
This done on an x86 kernel (where the ABI does not exist), an AArch64
kernel without this ABI, and an AArch64 kernel with this ABI.
In order to keep running the testsuite on kernels that do not provide
this new ABI we add another option to the HWASAN_OPTIONS environment
variable, this option determines whether the library kills the process
if it fails to enable the relaxed syscall ABI or not.
This new flag is `fail_without_syscall_abi`.
The check-hwasan testsuite results do not change with this patch on
either x86, AArch64 without a kernel supporting this ABI, and AArch64
with a kernel supporting this ABI.
Differential Revision: https://reviews.llvm.org/D96964
We currently always store absolute filenames in coverage mapping. This
is problematic for several reasons. It poses a problem for distributed
compilation as source location might vary across machines. We are also
duplicating the path prefix potentially wasting space.
This change modifies how we store filenames in coverage mapping. Rather
than absolute paths, it stores the compilation directory and file paths
as given to the compiler, either relative or absolute. Later when
reading the coverage mapping information, we recombine relative paths
with the working directory. This approach is similar to handling
ofDW_AT_comp_dir in DWARF.
Finally, we also provide a new option, -fprofile-compilation-dir akin
to -fdebug-compilation-dir which can be used to manually override the
compilation directory which is useful in distributed compilation cases.
Differential Revision: https://reviews.llvm.org/D95753
We currently always store absolute filenames in coverage mapping. This
is problematic for several reasons. It poses a problem for distributed
compilation as source location might vary across machines. We are also
duplicating the path prefix potentially wasting space.
This change modifies how we store filenames in coverage mapping. Rather
than absolute paths, it stores the compilation directory and file paths
as given to the compiler, either relative or absolute. Later when
reading the coverage mapping information, we recombine relative paths
with the working directory. This approach is similar to handling
ofDW_AT_comp_dir in DWARF.
Finally, we also provide a new option, -fprofile-compilation-dir akin
to -fdebug-compilation-dir which can be used to manually override the
compilation directory which is useful in distributed compilation cases.
Differential Revision: https://reviews.llvm.org/D95753
To make a kind of metadata section usage work, we want to drop the
`__start_/__stop_ references retain C identifier name sections` rule from LLD (see D96914).
If an application has no `__llvm_prf_data` input section surviving --gc-sections,
LLD will error for undefined hidden `{__start_,__stop_}__llvm_prf_*` from `libclang_rt.profile-*`.
Other `__llvm_prf_*` sections have similar issues.
Making the references weak can address the problem.
This probably enables the opportunity to drop zero size dummy sections in `InstrProfilingPlatformLinux.c`.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D96936
sys/cdefs.h is a glibc internal header which is not supposed to be included by applications.
(Some libc implementations provide this file for compatibility.)
Android features.h includes sys/cdefs.h, so we can include features.h instead.
This change makes `ninja gwp_asan` build on musl.
D14468 added these dummy sections. This patch adds `__attribute__((used))` so
that when compiled by GCC>=11 or (expected, D96838) Clang>=13 on some ELF platforms,
these sections will get SHF_GNU_RETAIN to make sure they will not be discarded
by ld --gc-sections.
We are trying to get rid of LLD's "__start_/__stop_ references retain C identifier name sections" rule.
If LLD drops the rule in the future (we will retain compatibility for `__llvm_prf_*` for a while),
`__llvm_prf_*` will need to have the SHF_GNU_RETAIN flag, otherwise:
```
// __llvm_prf_cnts/__llvm_prf_data usually exist, but {names,vnds} may not exist.
// Such diagnostics will happen with {cnts,data} as well if no input object file is instrumented.
% clang++ -fprofile-generate a.cc -fuse-ld=lld -Wl,--gc-sections
ld.lld: error: undefined hidden symbol: __start___llvm_prf_names
>>> referenced by InstrProfilingPlatformLinux.c
>>> InstrProfilingPlatformLinux.c.o:(__llvm_profile_begin_names) in archive /tmp/RelA/lib/clang/13.0.0/lib/linux/libclang_rt.profile-x86_64.a
...
```
Differential Revision: https://reviews.llvm.org/D96902
During unit tests, it was observed that crafting an artificially small DSO could cause OOB memory to be accessed. This change fixes that (but again, the affected DSOs are unlikely to ever occur outside unit tests).
Reviewed By: morehouse, charco
Differential Revision: https://reviews.llvm.org/D94507
If tsan runtime will try to allocate something during exit handling,
the allocation will fail because there is no VA whatsoever.
It's observed to fail with the following error in some cases:
failed to allocate 0x1000 (4096) bytes of DTLS_NextBlock.
So terminate the process immediately.
Reviewed-in: https://reviews.llvm.org/D96874
This test was found to fail for some of our downstream builds, on
computers where python was not on the default $PATH. Therefore
add a %python substitution to use sys.executable, based on similar
solutions for python calls in tests elsewhere in LLVM.
Differential Revision: https://reviews.llvm.org/D96799
This fixes the weak_hooks.cpp test on FreeBSD. Since this feature appears
to be supported on almost all platforms, it might also make sense to turn
it into an opt-out list instead of being opt-in.
Reviewed By: krytarowski
Differential Revision: https://reviews.llvm.org/D96255
When compiling with ccache, compiler commands get split into smaller steps
and clang's default -Wunused-command-line-argument complains about unused
include directory arguments. In combination -Werror, compilation aborts.
This patch passes the CMAKE_C_FLAGS into the build script. Configuring with
-DCMAKE_C_FLAGS=-Wno-unused-command-line-argument allows successful testing.
Differential Revision: https://reviews.llvm.org/D96762
If an app mmaps lots of memory, a user mmap may end up
in the tsan region for traces. Shadow for this range
overlaps with shadow for other user regions.
This causes havok: from false positives to crashes.
Don't leave unmapped holes in the traces region.
Reviewed-in: https://reviews.llvm.org/D96697
This change adds additional unit tests for fuzzer::Merger::Parse and fuzzer::Merger::Merge in anticipation of additional changes to the merge control file format to support cross-process fuzzing.
It modifies the parameter handling of Merge slightly in order to make NewFeatures and NewCov consistent with NewFiles; namely, Merge *replaces* the contents of these output parameters rather than accumulating them (thereby fixing a buggy return value).
This is change 1 of (at least) 18 for cross-process fuzzing support.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D94506
Not sure what the issue is, but it might be because the test copies
llvm-symbolizer to a different directory, and it can't find libc++.
Try to add some REQUIRES that we use in other tests where we copy
llvm tools out of their original directories.
Windows' memory unmapping has to be explicit, there is no madvise.
Similarly, re-mapping memory has to be explicit as well. This patch
implements a basic method for remapping memory which was previously
returned to the OS on Windows.
Patch by Matthew G. McGovern and Jordyn Puryear
As discussed, these tests are compiled with optimization to mimic real
sanitizer usage [1].
Let's mark relevant functions with `noinline` so we can continue to
check against the stack traces in the report.
[1] https://reviews.llvm.org/D96198
This reverts commit 04af72c542.
Differential Revision: https://reviews.llvm.org/D96357
This is a part of https://reviews.llvm.org/D95835.
The design is based on MSan origin chains.
An 4-byte origin is a hash of an origin chain. An origin chain is a
pair of a stack hash id and a hash to its previous origin chain. 0 means
no previous origin chains exist. We limit the length of a chain to be
16. With origin_history_size = 0, the limit is removed.
The change does not have any test cases yet. The following change
will be adding test cases when the APIs are used.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D96160
The recent suffix-log-path_test.c checks for a full stacktrace and
since on some arm-linux-gnu configuration the slow unwinder is used
on default (when the compiler emits thumb code as default), it
requires -funwind-tables on tests.
It also seems to fix the issues disable by d025df3c1d.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D96337
https://reviews.llvm.org/D95835 implements origin tracking for DFSan.
It reuses the chained origin depot of MSan.
This change moves the utility to sanitizer_common to share between
MSan and DFSan.
Reviewed-by: eugenis, morehouse
Differential Revision: https://reviews.llvm.org/D96319
This test started failing after https://reviews.llvm.org/D95849
defaulted --allow-unused-prefixes to false.
Taking a look at the test, I didn't see an obvious need to add
OS-specific check lines for each supported value of %os.
rdar://74207657
These tests use `--check-prefix=CHECK-%os` but then didn't have
a CHECK line for every os.
In most tests, the linux expectations were sufficient (they match
the "wrap_" prefix with .*), so just remove the check-prefix there.
In the places where this didn't easily work, make sure there are
at least CHECK-Windows and CHECK-Darwin lines.
GNU binutils accepts only `.arch_extension memtag` while Clang
accepts either that or `.arch_extension mte` to mean the same thing.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D95996
Adds a new allocation API to GWP-ASan that handles size+alignment
restrictions.
Reviewed By: cryptoad, eugenis
Differential Revision: https://reviews.llvm.org/D94830
The new pass manager was enabled by default [1].
The commit message states the following relevant differences:
* The inliner works slightly differently
* -O1 does some amount of inlining
These tests are affected because they specify `-O1` and then check the
reported stack trace.
[1] https://reviews.llvm.org/D95380
Differential Revision: https://reviews.llvm.org/D96198
This is a part of https://reviews.llvm.org/D95835.
This change is to address two problems
1) When recording stacks in origin tracking, libunwind is not async signal safe. Inside signal callbacks, we need
to use fast unwind. Fast unwind needs threads
2) StackDepot used by origin tracking is not async signal safe, we set a flag per thread inside
a signal callback to prevent from using it.
The thread registration is similar to ASan and MSan.
Related MSan changes are
* 98f5ea0dba
* f653cda269
* 5a7c364343
Some changes in the diff are used in the next diffs
1) The test case pthread.c is not very interesting for now. It will be
extended to test origin tracking later.
2) DFsanThread::InSignalHandler will be used by origin tracking later.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D95963
Switch to new logging api added in [[ https://developer.apple.com/documentation/os/os_log_error | macOS 10.12 ]] that is more memory safe and enables us to label the log messages in the future. Falls back to old API if ran on older OS versions.
Commited by Dan Liew on behalf of Emily Shi.
rdar://25181524
Reviewed By: delcypher, yln
Differential Revision: https://reviews.llvm.org/D95977
We want way to set a path to llvm-symbolizer that isn't relative
to the current working directory; this change adds a variable that
expands to the path relative to the current binary.
This approach came from comments in https://reviews.llvm.org/D93070
Differential Revision: https://reviews.llvm.org/D94563
AsanThread::Destroy implementation expected to be called on
child thread.
I missed authors concern regarding this reviewing D95184.
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D95731
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
Unwinders (like libc's backtrace()) can call their own locks (like the
libdl lock). We need to let the unwinder release the locks before
forking. Wrap a new lock around the unwinder for atfork protection.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D95889
DFSan uses TLS to pass metadata of arguments and return values. When an
instrumented function accesses the TLS, if a signal callback happens, and
the callback calls other instrumented functions with updating the same TLS,
the TLS is in an inconsistent state after the callback ends. This may cause
either under-tainting or over-tainting.
This fix follows MSan's workaround.
cb22c67a21
It simply resets TLS at restore. This prevents from over-tainting. Although
under-tainting may still happen, a taint flow can be found eventually if we
run a DFSan-instrumented program multiple times. The alternative option is
saving the entire TLS. However the TLS storage takes 2k bytes, and signal calls
could be nested. So it does not seem worth.
This diff fixes sigaction. A following diff will be fixing signal.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D95642
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
This fixes an apparent oversight in D91156, where the symbol was defined
without the leading underscore, then the visibility was later declared with it.
rdar://73364185
Differential revision: https://reviews.llvm.org/D95639
Fixes the `FastUnwindTest` unit test for RISC-V.
These changes reflect the different stack organization commonly used for
that architecture.
Differential Revision: https://reviews.llvm.org/D90574
This seems to be a safe way to ensure that the Compiler-RT test compiler
flags are properly set in all cross-compilation scenarios. Without this
when `BUILTINS_TEST_TARGET_CFLAGS` is set in
`compiler-rt/test/builtins/CMakeLists.txt` the other flags are cleared.
Differential Revision: https://reviews.llvm.org/D92124
D36116 refactored the logic of tests and removed the definition of TARGET_FLAGS, but left one use of it. Restore its definition for that one use, so that an x86_64 test is compiled with -m64.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93634
This commit accidentally enabled fgetgrent_r() in the msan tests under
FreeBSD, but this function is not supported. Also remove FreeBSD from
the SANITIZER_INTERCEPT_FGETGRENT_R macro.
With D92696, the Scudo Standalone GWP-ASan flag parsing was changed to
the new GWP-ASan optional one. We do not necessarily want this, as this
duplicates flag parsing code in Scudo Standalone when using the
GWP-ASan integration.
This CL reverts the changes within Scudo Standalone, and increases
`MaxFlags` to 20 as an addionnal option got us to the current max.
Differential Revision: https://reviews.llvm.org/D95542
This fixes the implementation for architectures like CHERI with strong
pointer provenance (pointers, and thus uintptr_t, are represented as
hardware capabilities). Specifically, adding two uintptr_t's together
(as is done for `start + length` and `funcStart + landingPad`) has
ambiguous provenance, whereas using a plain integer (such as size_t) for
the offset operand does not. Also, readULEB128 is creating a plain
integer, not a pointer.
On all currently-supported architectures this should be an NFC, as
size_t and uintptr_t end up being the same underlying plain integer
type.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D95537
The `zx_vmar_op_range` allows us to decommit memory pages without
needing a handle to the underlying vmo, as long as we have a handle to
a vmar that contains this mapping. This allows us to implement the
`ReleaseMemoryPagesToOS` function by decommitting the memory using a
handle to the root vmar.
Reviewed By: mcgrathr
Differential Revision: https://reviews.llvm.org/D95384
FreeBSD uses -Ddouble=jagged-little-pill -Dfloat=floaty-mcfloatface to
poison uses of floating point in its standalone environment. It also
deprecates machine/limits.h in favour of sys/limits.h and does not even
provide the former on newer architectures.
This is a cleaner reimplementation of equivalent patches in FreeBSD's
vendored copy of compiler-rt.
Reviewed By: dim
Differential Revision: https://reviews.llvm.org/D95264
zxtest doesn't have `EXPECT_DEATH` and the Scudo unit-tests were
defining it as a no-op.
This enables death tests on Fuchsia by using `ASSERT_DEATH` instead.
I used a lambda to wrap the expressions as this appears to not be
working the same way as `EXPECT_DEATH`.
Additionnally, a death test using `alarm` was failing with the change,
as it's currently not implemented in Fuchsia, so move that test within
a `!SCUDO_FUCHSIA` block.
Differential Revision: https://reviews.llvm.org/D94362
Previously in ASan's `pthread_create` interceptor we would block in the
`pthread_create` interceptor waiting for the child thread to start.
Unfortunately this has bad performance characteristics because the OS
scheduler doesn't know the relationship between the parent and child
thread (i.e. the parent thread cannot make progress until the child
thread makes progress) and may make the wrong scheduling decision which
stalls progress.
It turns out that ASan didn't use to block in this interceptor but was
changed to do so to try to address
http://llvm.org/bugs/show_bug.cgi?id=21621/.
In that bug the problem being addressed was a LeakSanitizer false
positive. That bug concerns a heap object being passed
as `arg` to `pthread_create`. If:
* The calling thread loses a live reference to the object (e.g.
`pthread_create` finishes and the thread no longer has a live
reference to the object).
* Leak checking is triggered.
* The child thread has not yet started (once it starts it will have a
live reference).
then the heap object will incorrectly appear to be leaked.
This bug is covered by the `lsan/TestCases/leak_check_before_thread_started.cpp` test case.
In b029c5101f ASan was changed to block
in `pthread_create()` until the child thread starts so that `arg` is
kept alive for the purposes of leaking check.
While this change "works" its problematic due to the performance
problems it causes. The change is also completely unnecessary if leak
checking is disabled (via detect_leaks runtime option or
CAN_SANITIZE_LEAKS compile time config).
This patch does two things:
1. Takes a different approach to solving the leak false positive by
making LSan's leak checking mechanism treat the `arg` pointer of
created but not started threads as reachable. This is done by
implementing the `ForEachRegisteredThreadContextCb` callback for
ASan.
2. Removes the blocking behaviour in the ASan `pthread_create`
interceptor.
rdar://problem/63537240
Differential Revision: https://reviews.llvm.org/D95184
This mechanism is intended to provide a way to treat the `arg` pointer
of a created (but not yet started) thread as reachable. In future
patches this will be implemented in `GetAdditionalThreadContextPtrs`.
A separate implementation of `GetAdditionalThreadContextPtrs` exists
for ASan and LSan runtimes because they need to be implemented
differently in future patches.
rdar://problem/63537240
Differential Revision: https://reviews.llvm.org/D95183
cmake_minimum_required(VERSION) calls cmake_policy(VERSION),
which sets all policies up to VERSION to NEW.
LLVM started requiring CMake 3.13 last year, so we can remove
a bunch of code setting policies prior to 3.13 to NEW as it
no longer has any effect.
Reviewed By: phosek, #libunwind, #libc, #libc_abi, ldionne
Differential Revision: https://reviews.llvm.org/D94374
D90422 changed this test to write a fixed value into register x23
instead of x20, but it did not update the list of reserved registers.
This meant that x23 may have been live across the register write,
although this happens to not be the case with the current compiler.
Fix the problem by updating the reserved register list.
`GetMacosAlignedVersion()` fails for ASan-ified launchd because the
sanitizer initialization code runs before `sysctl` has been setup by
launchd. In this situation, `sysctl kern.osproductversion` returns a
non-empty string that does not match our expectations of a
well-formatted version string.
Retrieving the kernel version (via `sysctl kern.osrelease`) still works,
so we can use it to add a fallback for this corner case.
Differential Revision: https://reviews.llvm.org/D94190
In preparation for the inbuilt options parser, this is a minor refactor
of optional components including:
- Putting certain optional elements in the right header files,
according to their function and their dependencies.
- Cleaning up some old and mostly-dead code.
- Moving some functions into anonymous namespaces to prevent symbol
export.
Reviewed By: cryptoad, eugenis
Differential Revision: https://reviews.llvm.org/D94117
When adding this function in https://reviews.llvm.org/D68794 I did not
notice that internal_prctl has the API of the syscall to prctl rather
than the API of the glibc (posix) wrapper.
This means that the error return value is not necessarily -1 and that
errno is not set by the call.
For InitPrctl this means that the checks do not catch running on a
kernel *without* the required ABI (not caught since I only tested this
function correctly enables the ABI when it exists).
This commit updates the two calls which check for an error condition to
use `internal_iserror`. That function sets a provided integer to an
equivalent errno value and returns a boolean to indicate success or not.
Tested by running on a kernel that has this ABI and on one that does
not. Verified that running on the kernel without this ABI the current
code prints the provided error message and does not attempt to run the
program. Verified that running on the kernel with this ABI the current
code does not print an error message and turns on the ABI.
All tests done on an AArch64 Linux machine.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D94425
There could be some mis-alignments when copying origins not aligned.
I believe inaligned memcpy is rare so the cases do not matter too much
in practice.
1) About the change at line 50
Let dst be (void*)5,
then d=5, beg=4
so we need to write 3 (4+4-5) bytes from 5 to 7.
2) About the change around line 77.
Let dst be (void*)5,
because of lines 50-55, the bytes from 5-7 were already writen.
So the aligned copy is from 8.
Reviewed-by: eugenis
Differential Revision: https://reviews.llvm.org/D94552
SX Aurora VE is an experimental target. We upstreamed many part of
ported llvm and clang. In order to continue this move, we need to
support libraries next, then we need to show the ability of llvm for
VE through test cases. As a first step for that, we need to use
crt in compiler-rt. VE has it's own crt but they are a part of
proprietary compiler. So, we want to use crt in compiler-rt as an
alternative.
This patch enables VE as a candidate of crt in compiler-rt.
Reviewed By: phosek, compnerd
Differential Revision: https://reviews.llvm.org/D92748
This function is called by the __atomic_is_lock_free() builtin if the value
cannot be resolved to true at compile time. Lack of this function is
causing the non-lockfree atomics tests in libc++ to not be run (see D91911)
This function is also added in D85044, but that review also adds support
for using lock-free atomics in more cases, whereas this is a minimal change
that just adds __atomic_is_lock_free() for the implementation of atomic.c.
Reviewed By: ldionne
Differential Revision: https://reviews.llvm.org/D92302
On Android, when the builtins are linked into a binary, they are
typically linked using -Wl,--exclude-libs so that the symbols aren't
reexported. For the NDK, compiler-rt's default behavior (build the
builtins archive with -fvisibility=hidden) is better so that builtins
are hidden even without -Wl,--exclude-libs.
Android needs the builtins with non-hidden symbols only for a special
case: for backwards compatibility with old binaries, the libc.so and
libm.so DSOs in the platform need to export some builtins for arm32 and
32-bit x86. See D56977.
Control the behavior with a new flag,
`COMPILER_RT_BUILTINS_HIDE_SYMBOLS`, that behaves similarly to the
`*_HERMETIC_STATIC_LIBRARY` in libunwind/libcxx/libcxxabi, so that
Android can build a special builtins variant for libc.so/libm.so.
Unlike the hermetic flags for other projects, this new flag is enabled
by default.
Reviewed By: compnerd, MaskRay
Differential Revision: https://reviews.llvm.org/D93431
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi lsan msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-lsan
(With GetTls (D93972), 10 failures)
Testing Time: 4.09s
Unsupported: 7
Passed : 65
Failed : 22
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify there is no unneeded interceptor.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Note: we need to place `_FILE_OFFSET_BITS` above `#include "sanitizer_platform.h"` to avoid `#define __USE_FILE_OFFSET64 1` in 32-bit ARM `features.h`
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
Suppress the warning:
```
'fake_shared_weak_count' has virtual functions but non-virtual destructor [-Wnon-virtual-dtor]
```
The warning has been recently enabled [1], but the associated cleanup
missed this instance in Darwin code [2].
[1] 9c31e12609
[2] d48f2d7c02
Differential Revision: https://reviews.llvm.org/D94139
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-lsan
(With GetTls (D93972), 10 failures)
Testing Time: 4.09s
Unsupported: 7
Passed : 65
Failed : 22
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify there is no unneeded interceptor.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
Some tests are broken at API level 30 on AOSP-master devices. When we
change the buildbuit to API level 30, the following tests get enabled.
They're currently broken due to various issues, and so fix up those
issues.
Reviewed By: oontvoo, eugenis
Differential Revision: https://reviews.llvm.org/D94100
This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
before:
$ echo 'int main(){}'|clang -g -fsanitize=leak -x c++ -;./a.out
Tracer caught signal 11: addr=0x7f4f73da5f40 pc=0x4222c8 sp=0x7f4f72cffd40
==1164171==LeakSanitizer has encountered a fatal error.
==1164171==HINT: For debugging, try setting environment variable LSAN_OPTIONS=verbosity=1:log_threads=1
==1164171==HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)
$ _
after:
$ echo 'int main(){}'|clang -g -fsanitize=leak -x c++ -;./a.out)
$ _
I haven't verified the size cannot be affected by Fedora patches of
upstream glibc-2.32 - but I do not expect upstream glibc-2.32 would have
the last sizes `(1216, 2304)` from 2013 around glibc-2.12.
Differential Revision: https://reviews.llvm.org/D93386
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify no unneeded interceptors.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
This makes suppression list to work similar to __lsan_ignore_object.
Existing behavior was inconsistent and very inconvenient for complex
data structures.
Example:
struct B;
struct A { B* ptr; };
A* t = makeA();
t->ptr = makeB();
Before the patch: if makeA suppressed by suppression file, lsan will
still report the makeB() leak, so we need two suppressions.
After the patch: a single makeA suppression is enough (the same as a
single __lsan_ignore_object(t)).
Differential Revision: https://reviews.llvm.org/D93884
This makes `PickValueInArray` work for `std::array<T, s>` (C++11). I've also tested the C++17 `std::array` (with compiler-deduced template parameters)
```
Author:
MarcoFalke <falke.marco@gmail.com>
```
Reviewed By: Dor1s
Differential Revision: https://reviews.llvm.org/D93412
rL254966 added `--sysroot=.` to prevent accidental including system headers.
It caused hassle to FreeBSD (D17383)/NetBSD. The next problem is that
we want to include `features.h` (usually `/usr/include/features.h`) to detect `__GLIBC__`.
At this point it seems that `--sysroot=.` adds lots of inconvenience so we disable it for now.
If there is a better way preventing accidental system header inclusion we can consider it again.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D93921
The primary and secondary allocators will need to share this bit,
so move the management of the bit to the combined allocator and
make useMemoryTagging() a free function.
Differential Revision: https://reviews.llvm.org/D93730
The macOS name mangling adds another underscore. Therefore, on macOS
the __atomic_* functions are actually ___atomic_* in libcompiler_rt.dylib.
To handle this case, prepend the asm() argument with __USER_LABEL_PREFIX__
in the same way that atomic.c does.
Reviewed By: ldionne
Differential Revision: https://reviews.llvm.org/D92833
On subtargets that have a red zone, we will copy the stack pointer to the base
pointer in the prologue prior to updating the stack pointer. There are no other
updates to the base pointer after that. This suggests that we should be able to
restore the stack pointer from the base pointer rather than loading it from the
back chain or adding the frame size back to either the stack pointer or the
frame pointer.
This came about because functions that call setjmp need to restore the SP from
the FP because the back chain might have been clobbered
(see https://reviews.llvm.org/D92906). However, if the stack is realigned, the
restored SP might be incorrect (which is what caused the failures in the two
ASan test cases).
This patch was tested quite extensivelly both with sanitizer runtimes and
general code.
Differential revision: https://reviews.llvm.org/D93327
Kernel support for MTE has been released in Linux 5.10. This means
that it is a stable API and we no longer need to make the support
conditional on a macro. We do need to provide conditional definitions
of the new macros though in order to avoid a dependency on new
kernel headers.
Differential Revision: https://reviews.llvm.org/D93513
canAllocate() does not take into account the header size so it does
not return the right answer in borderline cases. There was already
code handling this correctly in isTaggedAllocation() so split it out
into a separate function and call it from the test.
Furthermore the test was incorrect when MTE is enabled because MTE
does not pattern fill primary allocations. Fix it.
Differential Revision: https://reviews.llvm.org/D93437
Initially we were avoiding the release of smaller size classes due to
the fact that it was an expensive operation, particularly on 32-bit
platforms. With a lot of batches, and given that there are a lot of
blocks per page, this was a lengthy operation with little results.
There has been some improvements since then to the 32-bit release,
and we still have some criterias preventing us from wasting time
(eg, 9x% free blocks in the class size, etc).
Allowing to release blocks < 128 bytes helps in situations where a lot
of small chunks would not have been reclaimed if not for a forced
reclaiming.
Additionally change some `CHECK` to `DCHECK` and rearrange a bit the
code.
I didn't experience any regressions in my benchmarks.
Differential Revision: https://reviews.llvm.org/D93141
It's possible currently that the sanitizer runtimes when testing grab
the path to the symbolizer through *SAN_SYMBOLIZER_PATH=...
This can be polluted by things like Android's setup script. This patch
forces external_symbolizer_path=$new_build_out_dir/llvm-symbolizer when
%env_tool_options is used.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93352
...where the name of that variable defined in
compiler-rt/lib/builtins/cpu_model.c is decorated with a leading underscore
Differential Revision: https://reviews.llvm.org/D93390
`;` is the default comment marker, which is also used by powerpc*-*-elf target triples.
`@` is the comment marker of powerpc*-*-darwin but the Darwin support has been deleted for PowerPC (D72063).
`%%` is the statement separator used by aarch64-*-darwin (see AArch64MCAsmInfoDarwin, it uses `;` as the comment marker, which is different from most other targets)
Reviewed By: tambre
Differential Revision: https://reviews.llvm.org/D93378
aa772fc85e (D92530) has landed fixing relocations on Darwin.
3000c19df6 (D93236) has landed working around an assembly parser bug on Darwin.
Previous quick-fix d9697c2e6b (D93198) included in this commit.
Invoking the preprocessor ourselves is fragile and would require us to replicate CMake's handling of definitions, compiler flags, etc for proper compatibility.
In my toolchain builds this notably resulted in a bunch of warnings from unused flags as my CMAKE_C_FLAGS includes CPU-specific optimization options.
Notably this part was already duplicating the logic for VISIBILITY_HIDDEN define.
Instead, symlink the files and set the proper set of defines on each.
This should also be faster as we avoid invoking the compiler multiple times.
Fixes https://llvm.org/PR48494
Differential Revision: https://reviews.llvm.org/D93278
Put .cfi_startproc on a new line to avoid hitting the assembly parser bug in MasmParser::parseDirectiveCFIStartProc().
Reviewed By: tambre
Differential Revision: https://reviews.llvm.org/D93236