Commit Graph

96 Commits

Author SHA1 Message Date
Ahmed Bougacha 97564c3a1b [AArch64][ARM] Don't base interleaved op legality on type alloc size.
Otherwise, we think that most types that look like they'd fit in a
legal vector type are legal (so, basically, *any* vector type with a
size between 33 and 128 bits, I think, since we use pow2 alignment;
e.g., v2i25, v3f32, ...).

DataLayout::getTypeAllocSize rounds up based on alignment.
When checking for target intrinsic legality, that's not what we want:
if rounding makes a difference, the type isn't legal, and the
target intrinsics shouldn't be used, as they are always assumed legal.

One could make the argument that alloc size is ultimately the most
relevant here, since we're dealing with LD/ST intrinsics. That's only
true if we did legalize them though; that's a problem for another day.

Use DataLayout::getTypeSizeInBits instead of getTypeAllocSizeInBits.
Type::getSizeInBits can't be used because that'd gratuitously break
pointer vector support.

Some of these uses are currently fine, because we only hit them when
the type is already known legal (e.g., r114454). Update them for
consistency. It's faster to avoid the rounding anyway!

llvm-svn: 255089
2015-12-09 01:19:50 +00:00
Philip Reames 7c6692de16 [EarlyCSE] IsSimple vs IsVolatile naming clarification (NFC)
When the notion of target specific memory intrinsics was introduced to EarlyCSE, the commit confused the notions of volatile and simple memory access.  Since I'm about to start working on this area, cleanup the naming so that patches aren't horribly confusing.  Note that the actual implementation was always bailing if the load or store wasn't simple.  

Reminder:
- "volatile" - C++ volatile, can't remove any memory operations, but in principal unordered
- "ordered" - imposes ordering constraints on other nearby memory operations
- "atomic" - can't be split or sheared.  In LLVM terms, all "ordered" operations are also atomic so the predicate "isAtomic" is often used.
- "simple" - a load which is none of the above.  These are normal loads and what most of the optimizer works with.

llvm-svn: 254805
2015-12-05 00:18:33 +00:00
Matthew Simpson 343af07aa9 [Aarch64] Add cost for missing extensions.
This patch adds a cost estimate for some missing sign and zero extensions. The
costs were determined by counting the number of shift instructions generated
without context for each new extension.

Differential Revision: http://reviews.llvm.org/D14730

llvm-svn: 253482
2015-11-18 18:03:06 +00:00
Craig Topper 4b27576001 Remove templates from CostTableLookup functions. All instantiations had the same type.
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.

llvm-svn: 251490
2015-10-28 04:02:12 +00:00
Craig Topper ee0c859788 Convert cost table lookup functions to return a pointer to the entry or nullptr instead of the index.
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.

While there make use of ArrayRef and std::find_if.

llvm-svn: 251382
2015-10-27 04:14:24 +00:00
Craig Topper 7bf52c9d26 Use MVT::SimpleValueType instead of MVT in template parameter. NFC
llvm-svn: 251217
2015-10-25 00:27:14 +00:00
Craig Topper 272d6a57bb Call the version of ConvertCostTableLookup that takes a statically sized array rather than pointer and size. NFC
llvm-svn: 251196
2015-10-24 18:40:22 +00:00
Silviu Baranga a3e27edb5d [CostModel][AArch64] Remove amortization factor for some of the vector select instructions
Summary:
We are not scalarizing the wide selects in codegen for i16 and i32 and
therefore we can remove the amortization factor. We still have issues
with i64 vectors in codegen though.

Reviewers: mcrosier

Subscribers: mcrosier, aemerson, llvm-commits, rengolin

Differential Revision: http://reviews.llvm.org/D12724

llvm-svn: 247156
2015-09-09 15:35:02 +00:00
Silviu Baranga b322aa6f53 [CostModel][AArch64] Increase cost of vector insert element and add missing cast costs
Summary:
Increase the estimated costs for insert/extract element operations on
AArch64. This is motivated by results from benchmarking interleaved
accesses.

Add missing costs for zext/sext/trunc instructions and some integer to
floating point conversions. These costs were previously calculated
by scalarizing these operation and were affected by the cost increase of
the insert/extract element operations.

Reviewers: rengolin

Subscribers: mcrosier, aemerson, rengolin, llvm-commits

Differential Revision: http://reviews.llvm.org/D11939

llvm-svn: 245226
2015-08-17 16:05:09 +00:00
Chandler Carruth 93205eb966 [TTI] Make the cost APIs in TargetTransformInfo consistently use 'int'
rather than 'unsigned' for their costs.

For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).

All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.

This passes all tests, and is also UBSan clean.

No functional change intended.

Differential Revision: http://reviews.llvm.org/D11741

llvm-svn: 244080
2015-08-05 18:08:10 +00:00
Silviu Baranga 7581d22512 [ARM/AArch64] Fix cost model for interleaved accesses
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.

This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.

No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.

Reviewers: rengolin

Subscribers: aemerson, llvm-commits, rengolin

Differential Revision: http://reviews.llvm.org/D11524

llvm-svn: 243270
2015-07-27 14:39:34 +00:00
Mehdi Amini a749f2ad47 Remove getDataLayout() from TargetLowering
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.

Reviewers: echristo

Subscribers: yaron.keren, rafael, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D11042

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
2015-07-09 02:09:52 +00:00
Mehdi Amini 44ede33a69 Make TargetLowering::getPointerTy() taking DataLayout as an argument
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.

Reviewers: echristo

Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits

Differential Revision: http://reviews.llvm.org/D11028

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
2015-07-09 02:09:04 +00:00
Hao Liu 7ec8ee3119 [AArch64] Lower interleaved memory accesses to ldN/stN intrinsics. This patch also adds a function to calculate the cost of interleaved memory accesses.
E.g. Lower an interleaved load:
        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>
        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>
     into:
        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1

E.g. Lower an interleaved store:
        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
        store <12 x i32> %i.vec, <12 x i32>* %ptr
     into:
        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)

Differential Revision: http://reviews.llvm.org/D10533

llvm-svn: 240754
2015-06-26 02:32:07 +00:00
Hao Liu d0ca8d7edd [AArch64] Revert r239711 again. We need to discuss how to share code between AArch64 and ARM backend.
llvm-svn: 239713
2015-06-15 01:56:40 +00:00
Hao Liu cb070e3833 [AArch64] Match interleaved memory accesses into ldN/stN instructions.
Re-commit after adding "-aarch64-neon-syntax=generic" to fix the failure on OS X.
This patch was firstly committed in r239514, then reverted in r239544 because of a syntax incompatible failure on OS X.

llvm-svn: 239711
2015-06-15 01:35:49 +00:00
Rafael Espindola 65d37e64a9 This reverts commit r239529 and r239514.
Revert "[AArch64] Match interleaved memory accesses into ldN/stN instructions."
Revert "Fixing MSVC 2013 build error."

The  test/CodeGen/AArch64/aarch64-interleaved-accesses.ll test was failing on OS X.

llvm-svn: 239544
2015-06-11 17:30:33 +00:00
Hao Liu 4566d18e89 [AArch64] Match interleaved memory accesses into ldN/stN instructions.
Add a pass AArch64InterleavedAccess to identify and match interleaved memory accesses. This pass transforms an interleaved load/store into ldN/stN intrinsic. As Loop Vectorizor disables optimization on interleaved accesses by default, this optimization is also disabled by default. To enable it by "-aarch64-interleaved-access-opt=true"

E.g. Transform an interleaved load (Factor = 2):
       %wide.vec = load <8 x i32>, <8 x i32>* %ptr
       %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
       %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
     Into:
       %ld2 = { <4 x i32>, <4 x i32> } call aarch64.neon.ld2(%ptr)
       %v0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
       %v1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1

E.g. Transform an interleaved store (Factor = 2):
       %i.vec = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>  ; Interleaved vec
       store <8 x i32> %i.vec, <8 x i32>* %ptr
     Into:
       %v0 = shuffle %i.vec, undef, <0, 1, 2, 3>
       %v1 = shuffle %i.vec, undef, <4, 5, 6, 7>
       call void aarch64.neon.st2(%v0, %v1, %ptr)

llvm-svn: 239514
2015-06-11 09:05:02 +00:00
Wei Mi 062c74484d [X86] Disable loop unrolling in loop vectorization pass when VF is 1.
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.

Differential Revision: http://reviews.llvm.org/D9515

llvm-svn: 236613
2015-05-06 17:12:25 +00:00
Kevin Qin aef68418de [AArch64] Enable partial & runtime unrolling on cortex-a57
For inner one of nested loops, it is more likely to be a hot loop,
and the runtime check can be promoted out from patch 0001, so the
overhead is less, we can try a doubled threshold to unroll more loops.

llvm-svn: 231632
2015-03-09 06:14:28 +00:00
Benjamin Kramer 7149aabf8b Make some non-constant static variables non-static or fully const.
Otherwise we have to emit thread-safe initialization for them. NFC.

llvm-svn: 230894
2015-03-01 18:09:56 +00:00
Chandler Carruth ab5cb36c40 [multiversion] Remove the function parameter from the unrolling
preferences interface on TTI now that all of TTI is per-function.

llvm-svn: 227741
2015-02-01 14:31:23 +00:00
Chandler Carruth 93dcdc47db [PM] Switch the TargetMachine interface from accepting a pass manager
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.

This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.

I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.

With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.

llvm-svn: 227685
2015-01-31 11:17:59 +00:00
Chandler Carruth 705b185f90 [PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.

The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.

I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.

There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.

The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.

Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.

The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]

Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:

1) Improving the TargetMachine interface by having it directly return
   a TTI object. Because we have a non-pass object with value semantics
   and an internal type erasure mechanism, we can narrow the interface
   of the TargetMachine to *just* do what we need: build and return
   a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
   This will include splitting off a minimal form of it which is
   sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
   target machine for each function. This may actually be done as part
   of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
   easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
   easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
   just a bit messy and exacerbating the complexity of implementing
   the TTI in each target.

Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.

Differential Revision: http://reviews.llvm.org/D7293

llvm-svn: 227669
2015-01-31 03:43:40 +00:00
Chad Rosier f9327d6fe9 Commoning of target specific load/store intrinsics in Early CSE.
Phabricator revision: http://reviews.llvm.org/D7121
Patch by Sanjin Sijaric <ssijaric@codeaurora.org>!

llvm-svn: 227149
2015-01-26 22:51:15 +00:00
Kevin Qin 72a799a68a [AArch64] Enable partial & runtime unrolling on cortex-a57.
llvm-svn: 219401
2014-10-09 10:13:27 +00:00
Chad Rosier 70d54ac848 [AArch64] Improve cost model to handle sdiv by a pow-of-two.
This patch improves the target-specific cost model to better handle signed
division by a power of two. The immediate result is that this enables the SLP
vectorizer to do a better job.

http://reviews.llvm.org/D5469
PR20714

llvm-svn: 218607
2014-09-29 13:59:31 +00:00
Gerolf Hoflehner 7b0abb89c2 [AArch64] Revert r216141 for cyclone
The increase of the interleave factor to 4 has side-effects
like performance losses eg. due to reminder loops being executed
more frequently and may increase code size. It requires more
analysis and careful heuristic tuning. Expect double digit gains
in small benchmarks like lowercase.c and losses in puzzle.c.

llvm-svn: 217540
2014-09-10 20:31:57 +00:00
Sanjay Patel b653de1ada Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option names controlling this variable.
"Unroll" is not the appropriate name for this variable. Clang already uses 
the term "interleave" in pragmas and metadata for this.

Differential Revision: http://reviews.llvm.org/D5066

llvm-svn: 217528
2014-09-10 17:58:16 +00:00
Karthik Bhat 7f33ff7dea Allow vectorization of division by uniform power of 2.
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)

llvm-svn: 216371
2014-08-25 04:56:54 +00:00
James Molloy a88896b5c0 [LoopVectorize] Up the maximum unroll factor to 4 for AArch64
Only for Cortex-A57 and Cyclone for now, where it has shown wins.

llvm-svn: 216141
2014-08-21 00:02:51 +00:00
James Molloy 2b8933c354 Teach the SLP Vectorizer that keeping some values live over a callsite can have a cost.
Some types, such as 128-bit vector types on AArch64, don't have any callee-saved registers. So if a value needs to stay live over a callsite, it must be spilled and refilled. This cost is now taken into account.

llvm-svn: 214859
2014-08-05 12:30:34 +00:00
Eric Christopher d913448b38 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Tim Northover dbecc3b3fc AArch64: improve handling & modelling of FP_TO_XINT nodes.
There's probably no acatual change in behaviour here, just updating
the LowerFP_TO_INT function to be more similar to the reverse
implementation and updating costs to current CodeGen.

llvm-svn: 210985
2014-06-15 09:27:15 +00:00
Tim Northover ef0d760cd9 AArch64: improve vector [su]itofp handling.
This somehow got missed in the AArch64 merge, so should fix a
performance regression since 3.4.

llvm-svn: 210984
2014-06-15 09:27:06 +00:00
Tim Northover 3b0846e8f7 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

llvm-svn: 209577
2014-05-24 12:50:23 +00:00
Tim Northover cc08e1fe1b AArch64/ARM64: remove AArch64 from tree prior to renaming ARM64.
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.

The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.

Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.

llvm-svn: 209576
2014-05-24 12:42:26 +00:00
Craig Topper e06fc4f0ca [C++11] Add 'override' keywords and remove 'virtual'. Additionally add 'final' and leave 'virtual' on some methods that are marked virtual without overriding anything and have no obvious overrides themselves. AArch64 edition
llvm-svn: 207510
2014-04-29 07:58:34 +00:00
Craig Topper 062a2baef0 [C++] Use 'nullptr'. Target edition.
llvm-svn: 207197
2014-04-25 05:30:21 +00:00
Chandler Carruth 84e68b2994 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Target/...
edition.

llvm-svn: 206842
2014-04-22 02:41:26 +00:00
Jiangning Liu ad874fca28 This commit allows vectorized loops to be unrolled by a factor of 2 for AArch64.
A new test case is also added for ARM64.

Patched by Z.Zheng

llvm-svn: 206563
2014-04-18 07:57:54 +00:00
Nuno Lopes 31617266ea remove a bunch of unused private methods
found with a smarter version of -Wunused-member-function that I'm playwing with.
Appologies in advance if I removed someone's WIP code.

 include/llvm/CodeGen/MachineSSAUpdater.h            |    1 
 include/llvm/IR/DebugInfo.h                         |    3 
 lib/CodeGen/MachineSSAUpdater.cpp                   |   10 --
 lib/CodeGen/PostRASchedulerList.cpp                 |    1 
 lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp    |   10 --
 lib/IR/DebugInfo.cpp                                |   12 --
 lib/MC/MCAsmStreamer.cpp                            |    2 
 lib/Support/YAMLParser.cpp                          |   39 ---------
 lib/TableGen/TGParser.cpp                           |   16 ---
 lib/TableGen/TGParser.h                             |    1 
 lib/Target/AArch64/AArch64TargetTransformInfo.cpp   |    9 --
 lib/Target/ARM/ARMCodeEmitter.cpp                   |   12 --
 lib/Target/ARM/ARMFastISel.cpp                      |   84 --------------------
 lib/Target/Mips/MipsCodeEmitter.cpp                 |   11 --
 lib/Target/Mips/MipsConstantIslandPass.cpp          |   12 --
 lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp              |   21 -----
 lib/Target/NVPTX/NVPTXISelDAGToDAG.h                |    2 
 lib/Target/PowerPC/PPCFastISel.cpp                  |    1 
 lib/Transforms/Instrumentation/AddressSanitizer.cpp |    2 
 lib/Transforms/Instrumentation/BoundsChecking.cpp   |    2 
 lib/Transforms/Instrumentation/MemorySanitizer.cpp  |    1 
 lib/Transforms/Scalar/LoopIdiomRecognize.cpp        |    8 -
 lib/Transforms/Scalar/SCCP.cpp                      |    1 
 utils/TableGen/CodeEmitterGen.cpp                   |    2 
 24 files changed, 2 insertions(+), 261 deletions(-)

llvm-svn: 204560
2014-03-23 17:09:26 +00:00
Chandler Carruth aee3ca6cfd [TTI] There is actually no realistic way to pop TTI implementations off
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.

This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.

llvm-svn: 203437
2014-03-10 02:45:14 +00:00
Craig Topper 73156025e0 Switch all uses of LLVM_OVERRIDE to just use 'override' directly.
llvm-svn: 202621
2014-03-02 09:09:27 +00:00
Craig Topper 77dfe45f81 Switch all uses of LLVM_FINAL to just use 'final', and remove the macro.
llvm-svn: 202618
2014-03-02 08:08:51 +00:00
Chad Rosier 63bfeb993b [AArch64] Add support for TargetTransformInfo Analysis.
llvm-svn: 201793
2014-02-20 16:00:08 +00:00