Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.
Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.
Based on ideas discussed with @evgeny777 in D56672.
Differential Revision: https://reviews.llvm.org/D65770
llvm-svn: 368102
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
llvm-svn: 366379
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
llvm-svn: 365551
These are sources of poison which don't come from flags, but are clearly documented in the LangRef. Left off support for scalable vectors for the moment, but should be easy to add if anyone is interested.
llvm-svn: 365543
Implements a transform pass which instruments IR such that poison semantics are made explicit. That is, it provides a (possibly partial) executable semantics for every instruction w.r.t. poison as specified in the LLVM LangRef. There are obvious parallels to the sanitizer tools, but this pass is focused purely on the semantics of LLVM IR, not any particular source language.
The target audience for this tool is developers working on or targetting LLVM from a frontend. The idea is to be able to take arbitrary IR (with the assumption of known inputs), and evaluate it concretely after having made poison semantics explicit to detect cases where either a) the original code executes UB, or b) a transform pass introduces UB which didn't exist in the original program.
At the moment, this is mostly the framework and still needs to be fleshed out. By reusing existing code we have decent coverage, but there's a lot of cases not yet handled. What's here is good enough to handle interesting cases though; for instance, one of the recent LFTR bugs involved UB being triggered by integer induction variables with nsw/nuw flags would be reported by the current code.
(See comment in PoisonChecking.cpp for full explanation and context)
Differential Revision: https://reviews.llvm.org/D64215
llvm-svn: 365536
This reverts commit r365260 which broke the following tests:
Clang :: CodeGenCXX/cfi-mfcall.cpp
Clang :: CodeGenObjC/ubsan-nullability.m
LLVM :: Transforms/LoopVectorize/AArch64/pr36032.ll
llvm-svn: 365284
Without this, we have the unfortunate property that tests are dependent on the order of operads passed the CreateOr and CreateAnd functions. In actual usage, we'd promptly optimize them away, but it made tests slightly more verbose than they should have been.
llvm-svn: 365260
Summary:
Handling callbr is very similar to handling an inline assembly call:
MSan must checks the instruction's inputs.
callbr doesn't (yet) have outputs, so there's nothing to unpoison,
and conservative assembly handling doesn't apply either.
Fixes PR42479.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64072
llvm-svn: 365008
This shaves an instruction (and a GOT entry in PIC code) off prologues of
functions with stack variables.
Differential Revision: https://reviews.llvm.org/D63472
llvm-svn: 364608
The VM layout on iOS is not stable between releases. On 64-bit iOS and
its derivatives we use a dynamic shadow offset that enables ASan to
search for a valid location for the shadow heap on process launch rather
than hardcode it.
This commit extends that approach for 32-bit iOS plus derivatives and
their simulators.
rdar://50645192
rdar://51200372
rdar://51767702
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D63586
llvm-svn: 364105
Currently, many profiling tests on Solaris FAIL like
Command Output (stderr):
--
Undefined first referenced
symbol in file
__llvm_profile_register_names_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
__llvm_profile_register_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
Solaris 11.4 ld supports the non-standard GNU ld extension of adding
__start_SECNAME and __stop_SECNAME labels to sections whose names are valid
as C identifiers. Given that we already use Solaris 11.4-only features
like ld -z gnu-version-script-compat and fully working .preinit_array
support in compiler-rt, we don't need to worry about older versions of
Solaris ld.
The patch documents that support (although the comment in
lib/Transforms/Instrumentation/InstrProfiling.cpp
(needsRuntimeRegistrationOfSectionRange) is quite cryptic what it's
actually about), and adapts the affected testcase not to expect the
alternativeq __llvm_profile_register_functions and __llvm_profile_init.
It fixes all affected tests.
Tested on amd64-pc-solaris2.11.
Differential Revision: https://reviews.llvm.org/D41111
llvm-svn: 363984
This saves roughly 32 bytes of instructions per function with stack objects
and causes us to preserve enough information that we can recover the original
tags of all stack variables.
Now that stack tags are deterministic, we no longer need to pass
-hwasan-generate-tags-with-calls during check-hwasan. This also means that
the new stack tag generation mechanism is exercised by check-hwasan.
Differential Revision: https://reviews.llvm.org/D63360
llvm-svn: 363636
The goal is to improve hwasan's error reporting for stack use-after-return by
recording enough information to allow the specific variable that was accessed
to be identified based on the pointer's tag. Currently we record the PC and
lower bits of SP for each stack frame we create (which will eventually be
enough to derive the base tag used by the stack frame) but that's not enough
to determine the specific tag for each variable, which is the stack frame's
base tag XOR a value (the "tag offset") that is unique for each variable in
a function.
In IR, the tag offset is most naturally represented as part of a location
expression on the llvm.dbg.declare instruction. However, the presence of the
tag offset in the variable's actual location expression is likely to confuse
debuggers which won't know about tag offsets, and moreover the tag offset
is not required for a debugger to determine the location of the variable on
the stack, so at the DWARF level it is represented as an attribute so that
it will be ignored by debuggers that don't know about it.
Differential Revision: https://reviews.llvm.org/D63119
llvm-svn: 363635
Summary:
Adds a call to __hwasan_handle_vfork(SP) at each landingpad entry.
Reusing __hwasan_handle_vfork instead of introducing a new runtime call
in order to be ABI-compatible with old runtime library.
Reviewers: pcc
Subscribers: kubamracek, hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D61968
llvm-svn: 360959
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.
Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.
Differential Revision: https://reviews.llvm.org/D61709
llvm-svn: 360707
Fixes the main issue in PR41693
When both modes are used, two functions are created:
`sancov.module_ctor`, `sancov.module_ctor.$LastUnique`, where
$LastUnique is the current LastUnique counter that may be different in
another module.
`sancov.module_ctor.$LastUnique` belongs to the comdat group of the same
name (due to the non-null third field of the ctor in llvm.global_ctors).
COMDAT group section [ 9] `.group' [sancov.module_ctor] contains 6 sections:
[Index] Name
[ 10] .text.sancov.module_ctor
[ 11] .rela.text.sancov.module_ctor
[ 12] .text.sancov.module_ctor.6
[ 13] .rela.text.sancov.module_ctor.6
[ 23] .init_array.2
[ 24] .rela.init_array.2
# 2 problems:
# 1) If sancov.module_ctor in this module is discarded, this group
# has a relocation to a discarded section. ld.bfd and gold will
# error. (Another issue: it is silently accepted by lld)
# 2) The comdat group has an unstable name that may be different in
# another translation unit. Even if the linker allows the dangling relocation
# (with --noinhibit-exec), there will be many undesired .init_array entries
COMDAT group section [ 25] `.group' [sancov.module_ctor.6] contains 2 sections:
[Index] Name
[ 26] .init_array.2
[ 27] .rela.init_array.2
By using different module ctor names, the associated comdat group names
will also be different and thus stable across modules.
Reviewed By: morehouse, phosek
Differential Revision: https://reviews.llvm.org/D61510
llvm-svn: 360107
Summary:
When a variable goes into scope several times within a single function
or when two variables from different scopes share a stack slot it may
be incorrect to poison such scoped locals at the beginning of the
function.
In the former case it may lead to false negatives (see
https://github.com/google/sanitizers/issues/590), in the latter - to
incorrect reports (because only one origin remains on the stack).
If Clang emits lifetime intrinsics for such scoped variables we insert
code poisoning them after each call to llvm.lifetime.start().
If for a certain intrinsic we fail to find a corresponding alloca, we
fall back to poisoning allocas for the whole function, as it's now
impossible to tell which alloca was missed.
The new instrumentation may slow down hot loops containing local
variables with lifetime intrinsics, so we allow disabling it with
-mllvm -msan-handle-lifetime-intrinsics=false.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60617
llvm-svn: 359536
If there are any intrinsics that cannot be traced back to an alloca, we
might have missed the start of a variable's scope, leading to false
error reports if the variable is poisoned at function entry. Instead, if
there are some intrinsics that can't be traced, fail safe and don't
poison the variables in that function.
Differential revision: https://reviews.llvm.org/D60686
llvm-svn: 358478
If the ObjectSizeOffsetEvaluator fails to fold the object size call, then it may
litter some unused instructions in the function. When done repeatably in
InstCombine, this results in an infinite loop. Fix this by tracking the set of
instructions that were inserted, then removing them on failure.
rdar://49172227
Differential revision: https://reviews.llvm.org/D60298
llvm-svn: 358146
It's been on in Android for a while without causing problems, so it's time
to make it the default and remove the flag.
Differential Revision: https://reviews.llvm.org/D60355
llvm-svn: 357960
This is in preparation to a driver patch to add gcc 8's -fsanitize=pointer-compare and -fsanitize=pointer-subtract.
Disabled by default as this is still an experimental feature.
Reviewed By: morehouse, vitalybuka
Differential Revision: https://reviews.llvm.org/D59220
llvm-svn: 357157
Just as as llvm IR supports explicitly specifying numeric value ids
for instructions, and emits them by default in textual output, now do
the same for blocks.
This is a slightly incompatible change in the textual IR format.
Previously, llvm would parse numeric labels as string names. E.g.
define void @f() {
br label %"55"
55:
ret void
}
defined a label *named* "55", even without needing to be quoted, while
the reference required quoting. Now, if you intend a block label which
looks like a value number to be a name, you must quote it in the
definition too (e.g. `"55":`).
Previously, llvm would print nameless blocks only as a comment, and
would omit it if there was no predecessor. This could cause confusion
for readers of the IR, just as unnamed instructions did prior to the
addition of "%5 = " syntax, back in 2008 (PR2480).
Now, it will always print a label for an unnamed block, with the
exception of the entry block. (IMO it may be better to print it for
the entry-block as well. However, that requires updating many more
tests.)
Thus, the following is supported, and is the canonical printing:
define i32 @f(i32, i32) {
%3 = add i32 %0, %1
br label %4
4:
ret i32 %3
}
New test cases covering this behavior are added, and other tests
updated as required.
Differential Revision: https://reviews.llvm.org/D58548
llvm-svn: 356789
This patch adds a new option to SplitAllCriticalEdges and uses it to avoid splitting critical edges when the destination basic block ends with unreachable. Otherwise if we split the critical edge, sanitizer coverage will instrument the new block that gets inserted for the split. But since this block itself shouldn't be reachable this is pointless. These basic blocks will stick around and generate assembly, but they don't end in sane control flow and might get placed at the end of the function. This makes it look like one function has code that flows into the next function.
This showed up while compiling the linux kernel with clang. The kernel has a tool called objtool that detected the code that appeared to flow from one function to the next. https://github.com/ClangBuiltLinux/linux/issues/351#issuecomment-461698884
Differential Revision: https://reviews.llvm.org/D57982
llvm-svn: 355947
It hasn't seen active development in years, and it hasn't reached a
state where it was useful.
Remove the code until someone is interested in working on it again.
Differential Revision: https://reviews.llvm.org/D59133
llvm-svn: 355862
Summary:
They simply shuffle bits. MSan needs to do the same with shadow bits,
after making sure that the shuffle mask is fully initialized.
Reviewers: pcc, vitalybuka
Subscribers: hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58858
llvm-svn: 355348
Summary:
These sorts of blocks often contain calls to noreturn functions, like
longjmp, throw, or trap. If they don't end the program, they are
"interesting" from the perspective of sanitizer coverage, so we should
instrument them. This was discussed in https://reviews.llvm.org/D57982.
Reviewers: kcc, vitalybuka
Subscribers: llvm-commits, craig.topper, efriedma, morehouse, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58740
llvm-svn: 355152
The basic idea of the pass is to use a circular buffer to log the execution ordering of the functions. We only log the function when it is first executed. We use a 8-byte hash to log the function symbol name.
In this pass, we add three global variables:
(1) an order file buffer: a circular buffer at its own llvm section.
(2) a bitmap for each module: one byte for each function to say if the function is already executed.
(3) a global index to the order file buffer.
At the function prologue, if the function has not been executed (by checking the bitmap), log the function hash, then atomically increase the index.
Differential Revision: https://reviews.llvm.org/D57463
llvm-svn: 355133
Summary:
I hadn't realized that instrumentation runs before inlining, so we can't
use the function as the comdat group. Doing so can create relocations
against discarded sections when references to discarded __profc_
variables are inlined into functions outside the function's comdat
group.
In the future, perhaps we should consider standardizing the comdat group
names that ELF and COFF use. It will save object file size, since
__profv_$sym won't appear in the symbol table again.
Reviewers: xur, vsk
Subscribers: eraman, hiraditya, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58737
llvm-svn: 355044
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
Summary:
The motivating use case is eliminating duplicate profile data registered
for the same inline function in two object files. Before this change,
users would observe multiple symbol definition errors with VC link, but
links with LLD would succeed.
Users (Mozilla) have reported that PGO works well with clang-cl and LLD,
but when using LLD without this static registration, we would get into a
"relocation against a discarded section" situation. I'm not sure what
happens in that situation, but I suspect that duplicate, unused profile
information was retained. If so, this change will reduce the size of
such binaries with LLD.
Now, Windows uses static registration and is in line with all the other
platforms.
Reviewers: davidxl, wmi, inglorion, void, calixte
Subscribers: mgorny, krytarowski, eraman, fedor.sergeev, hiraditya, #sanitizers, dmajor, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D57929
llvm-svn: 353547
Summary:
This is a follow up for https://reviews.llvm.org/D57278. The previous
revision should have also included Kernel ASan.
rdar://problem/40723397
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57711
llvm-svn: 353120
Summary:
If the user declares or defines `__sancov_lowest_stack` with an
unexpected type, then `getOrInsertGlobal` inserts a bitcast and the
following cast fails:
```
Constant *SanCovLowestStackConstant =
M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy);
SanCovLowestStack = cast<GlobalVariable>(SanCovLowestStackConstant);
```
This variable is a SanitizerCoverage implementation detail and the user
should generally never have a need to access it, so we emit an error
now.
rdar://problem/44143130
Reviewers: morehouse
Differential Revision: https://reviews.llvm.org/D57633
llvm-svn: 353100
Summary:
Currently, ASan inserts a call to `__asan_handle_no_return` before every
`noreturn` function call/invoke. This is unnecessary for calls to other
runtime funtions. This patch changes ASan to skip instrumentation for
functions calls marked with `!nosanitize` metadata.
Reviewers: TODO
Differential Revision: https://reviews.llvm.org/D57489
llvm-svn: 352948
Otherwise they are treated as dynamic allocas, which ends up increasing
code size significantly. This reduces size of Chromium base_unittests
by 2MB (6.7%).
Differential Revision: https://reviews.llvm.org/D57205
llvm-svn: 352152