Shift-left immediate with sign-/zero-extensions also works for boolean values.
Update the assert and the test cases to reflect that fact.
This should fix a bug found by Chad.
llvm-svn: 218275
When looking through sign/zero-extensions the code would always assume there is
such an extension instruction and use the wrong operand for the address.
There was also a minor issue in the handling of 'AND' instructions. I
accidentially used a 'cast' instead of a 'dyn_cast'.
llvm-svn: 218161
When folding the intrinsic flag into the branch or select we also have to
consider the fact if the intrinsic got simplified, because it changes the
flag we have to check for.
llvm-svn: 218034
Small optimization in 'simplifyAddress'. When the offset cannot be encoded in
the load/store instruction, then we need to materialize the address manually.
The add instruction can encode a wider range of immediates than the load/store
instructions. This change tries to fold the offset into the add instruction
first before materializing the offset in a register.
llvm-svn: 218031
The 'AND' instruction could be used to mask out the lower 32 bits of a register.
If this is done inside an address computation we might be able to fold the
instruction into the memory instruction itself.
and x1, x1, #0xffffffff ---> ldrb x0, [x0, w1, uxtw]
ldrb x0, [x0, x1]
llvm-svn: 218030
This takes advanatage of the CBZ and CBNZ instruction to further optimize the
common null check pattern into a single instruction.
This is related to rdar://problem/18358882.
llvm-svn: 217972
This adds the last two missing floating-point condition codes (FCMP_UEQ and
FCMP_ONE) also to the branch selection. In these two cases an additonal branch
instruction is required.
This also adds unit tests to checks all the different condition codes.
This is related o rdar://problem/18358882.
llvm-svn: 217966
Allow handling of vectors during return lowering at least for little endian machines.
This was restricted in r208200 to fix it for big endian machines (according to
the comment), but it also disabled it for little endian too.
llvm-svn: 217846
This lowers frem to a runtime libcall inside fast-isel.
The test case also checks the CallLoweringInfo bug that was exposed by this
change.
This fixes rdar://problem/18342783.
llvm-svn: 217833
using static relocation model and small code model.
Summary: currently we generate GOT based relocations for weak symbol
references regardless of the underlying relocation model. This should
be change so that in static relocation model we use a constant pool
load instead.
Patch from: Keith Walker
Reviewers: Renato Golin, Tim Northover
llvm-svn: 217503
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.
Reviewed by Eric
llvm-svn: 217075
Things got a little bit messy over the years and it is time for a little bit
spring cleaning.
This first commit is focused on the FastISel base class itself. It doxyfies all
comments, C++11fies the code where it makes sense, renames internal methods to
adhere to the coding standard, and clang-formats the files.
Reviewed by Eric
llvm-svn: 217060
There is already target-dependent instruction selection support for Adds/Subs to
support compares and the intrinsics with overflow check. This takes advantage of
the existing infrastructure to also support Add/Sub, which allows the folding of
immediates, sign-/zero-extends, and shifts.
This fixes rdar://problem/18207316.
llvm-svn: 217007
This uses the target-dependent selection code for shifts first, which allows us
to create better code for shifts with immediates and sign-/zero-extend folding.
Vector type are not handled yet and the code falls back to target-independent
instruction selection for these cases.
This fixes rdar://problem/17907920.
llvm-svn: 216985
FastISel for AArch64 supports more value types than are actually legal. Use a
dedicated helper function to reflect this.
It is very similar to the isLoadStoreTypeLegal function, with the exception
that vector types are not supported yet.
llvm-svn: 216984
This change moves FastISel for AArch64 to target-dependent instruction selection
only. This change replicates the existing target-independent behavior, therefore
there are no changes to the unit tests or new tests.
Future changes will take advantage of this change and update functionality
and unit tests.
llvm-svn: 216955
When we select a trunc instruction we don't emit any code if the type is already
i32 or smaller. This is because the instruction that uses the truncated value
will deal with it.
This behavior can incorrectly transfer a kill flag, which was meant for the
result of the truncate, onto the source register.
%2 = trunc i32 %1 to i16
... = ... %2 -> ... = ... vreg1 <kill>
... = ... %1 ... = ... vreg1
This commit fixes this by emitting a COPY instruction, so that the result and
source register are distinct virtual registers.
This fixes rdar://problem/18178188.
llvm-svn: 216750
This fix checks first if the instruction to be folded (e.g. sign-/zero-extend,
or shift) is in the same machine basic block as the instruction we are folding
into.
Not doing so can result in incorrect code, because the value might not be
live-out of the basic block, where the value is defined.
This fixes rdar://problem/18169495.
llvm-svn: 216700
Currently instructions are folded very aggressively into the memory operation,
which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
If the computed address is used by only memory operations in the same basic
block, then it is safe to fold them. This is because all memory operations will
fold the address computation and the original computation will never be emitted.
This fixes rdar://problem/18142857.
llvm-svn: 216629
When the address comes directly from a shift instruction then the address
computation cannot be folded into the memory instruction, because the zero
register is not available as a base register. Simplify addess needs to emit the
shift instruction and use the result as base register.
llvm-svn: 216621
Use the zero register directly when possible to avoid an unnecessary register
copy and a wasted register at -O0. This also uses integer stores to store a
positive floating-point zero. This saves us from materializing the positive zero
in a register and then storing it.
llvm-svn: 216617
When a shift with extension or an add with shift and extension cannot be folded
into the memory operation, then the address calculation has to be materialized
separately. While doing so the code forgot to consider a possible sign-/zero-
extension. This fix folds now also the sign-/zero-extension into the add or
shift instruction which is used to materialize the address.
This fixes rdar://problem/18141718.
llvm-svn: 216511
This is mostly achieved by providing the correct register class manually,
because getRegClassFor always returns the GPR*AllRegClass for MVT::i32 and
MVT::i64.
Also cleanup the code to use the FastEmitInst_* method whenever possible. This
makes sure that the operands' register class is properly constrained. For all
the remaining cases this adds the missing constrainOperandRegClass calls for
each operand.
llvm-svn: 216225
This fixes a bug I introduced in a previous commit (r216033). Sign-/Zero-
extension from i1 cannot be folded into the ADDS/SUBS instructions. Instead both
operands have to be sign-/zero-extended with separate instructions.
Related to <rdar://problem/17913111>.
llvm-svn: 216073
Use FMOVWSr/FMOVXDr instead of FMOVSr/FMOVDr, which have the proper register
class to be used with the zero register. This makes the MachineInstruction
verifier happy again.
This is related to <rdar://problem/18027157>.
llvm-svn: 216040
Factor out the ADDS/SUBS instruction emission code into helper functions and
make the helper functions more clever to support most of the different ADDS/SUBS
instructions the architecture support. This includes better immedediate support,
shift folding, and sign-/zero-extend folding.
This fixes <rdar://problem/17913111>.
llvm-svn: 216033
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.
Original commit message:
FastISel didn't take much advantage of the different addressing modes available
to it on AArch64. This commit allows the ComputeAddress method to recognize more
addressing modes that allows shifts and sign-/zero-extensions to be folded into
the memory operation itself.
For Example:
lsl x1, x1, #3 --> ldr x0, [x0, x1, lsl #3]
ldr x0, [x0, x1]
sxtw x1, w1
lsl x1, x1, #3 --> ldr x0, [x0, x1, sxtw #3]
ldr x0, [x0, x1]
llvm-svn: 216013
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.
Original commit message:
This change materializes now the value "0" from the zero register.
The zero register can be folded by several instruction, so no
materialization is need at all.
Fixes <rdar://problem/17924413>.
llvm-svn: 216009
This fixes a few BuildMI callsites where the result register was added by
using addReg, which is per default a use and therefore an operand register.
Also use the zero register as result register when emitting a compare
instruction (SUBS with unused result register).
llvm-svn: 215997
The floating-point value positive zero (+0.0) is a valid immedate value
according to isFPImmLegal. As a result AArch64 FastISel went ahead and
used the immediate version of fmov to materialize the constant.
The problem is that the immediate version of fmov cannot encode an imediate for
postive zero. Instead a fmov from the zero register was supposed to be used in
this case.
This fix adds handling for this special case and uses fmov from the zero
register to materialize a positive zero (negative zeroes go to the constant
pool).
There is no test case for this, because this code is currently dead. It will be
enabled in a future commit and I will add a test case in a separate commit
after that.
This fixes <rdar://problem/18027157>.
llvm-svn: 215753
Note: This reapplies r215582 without any modifications. The refactoring wasn't
responsible for the buildbot failures.
Original commit message:
Cleanup and prepare constant materialization code for future commits.
llvm-svn: 215752
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
Certain functions such as objc_autoreleaseReturnValue have to be called as
tail-calls even at -O0. Since normal fast-isel doesn't emit calls as tail calls,
we have to fall back to SelectionDAG to select calls that are marked as tail.
<rdar://problem/17991614>
llvm-svn: 215600
FastISel didn't take much advantage of the different addressing modes available
to it on AArch64. This commit allows the ComputeAddress method to recognize more
addressing modes that allows shifts and sign-/zero-extensions to be folded into
the memory operation itself.
For Example:
lsl x1, x1, #3 --> ldr x0, [x0, x1, lsl #3]
ldr x0, [x0, x1]
sxtw x1, w1
lsl x1, x1, #3 --> ldr x0, [x0, x1, sxtw #3]
ldr x0, [x0, x1]
llvm-svn: 215597
This change materializes now the value "0" from the zero register.
The zero register can be folded by several instruction, so no
materialization is need at all.
Fixes <rdar://problem/17924413>.
llvm-svn: 215591
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
The original code would fail for unsupported value types like i1, i8, and i16.
This fix changes the code to only create a sub-register copy for i64 value types
and all other types (i1/i8/i16/i32) just use the source register without any
modifications.
getRegClassFor() is now guarded by the i64 value type check, that guarantees
that we always request a register for a valid value type.
llvm-svn: 214848
This implements basic argument lowering for AArch64 in FastISel. It only
handles a small subset of the C calling convention. It supports simple
arguments that can be passed in GPR and FPR registers.
This should cover most of the trivial cases without falling back to
SelectionDAG.
This fixes <rdar://problem/17890986>.
llvm-svn: 214846
This fix changes the parameters #r and #s that are passed to the UBFM/SBFM
instruction to get the zero/sign-extension for free.
The original problem was that the shift left would use the 32-bit shift even for
i8/i16 value types, which could leave the upper bits set with "garbage" values.
The arithmetic shift right on the other side would use the wrong MSB as sign-bit
to determine what bits to shift into the value.
This fixes <rdar://problem/17907720>.
llvm-svn: 214788
Add branch weights to branch instructions, so that the following passes can
optimize based on it (i.e. basic block ordering).
Fixes <rdar://problem/17887137>.
llvm-svn: 214537
ADDS and SUBS cannot encode negative immediates or immediates larger than 12bit.
This fix checks if the immediate version can be used under this constraints and
if we can convert ADDS to SUBS or vice versa to support negative immediates.
Also update the test cases to test the immediate versions.
llvm-svn: 214470
Currently the large code model for MachO uses the GOT to make function calls.
Emit the required adrp and ldr instructions to load the address from the GOT.
Related to <rdar://problem/17733076>.
llvm-svn: 214381
UNDEF arguments are not ment to be touched - especially for the webkit_js
calling convention. This fix reproduces the already existing behavior of
SelectionDAG in FastISel.
llvm-svn: 214366
This improves the code generation for the XALU intrinsics when the
condition is feeding a select instruction.
This also updates and enables the XALU unit tests for FastISel.
This fixes <rdar://problem/17831117>.
llvm-svn: 214350
This improves the code generation for the XALU intrinsics when the
condition is feeding a branch instruction.
This is related to <rdar://problem/17831117>.
llvm-svn: 214349
This commit adds support for the {s|u}{add|sub|mul}.with.overflow intrinsics.
The unit tests for FastISel will be enabled in a later commit, once there is
also branch and select folding support.
This is related to <rdar://problem/17831117>.
llvm-svn: 214348
Currently the shift-immediate versions are not supported by tblgen and
hopefully this can be later removed, once the required support has been
added to tblgen.
llvm-svn: 214345
This commit implements the frameaddress intrinsic for the AArch64 architecture
in FastISel.
There were two test cases that pretty much tested the same, so I combined them
to a single test case.
Fixes <rdar://problem/17811834>
llvm-svn: 213959
I used the wrong method to obtain the return type inside FinishCall. This fix
simply uses the return type from FastLowerCall, which we already determined to
be a valid type.
Reduced test case from Chad. Thanks.
llvm-svn: 213788
This commit modifies the existing call lowering functions to be used as the
FastLowerCall and FastLowerIntrinsicCall target-hooks instead.
This enables patchpoint intrinsic lowering for AArch64.
This fixes <rdar://problem/17733076>
llvm-svn: 213704
This is a follow up to r212492. There should be no functional difference, but
this patch makes it clear that SrcVT must be an i1/i8/16/i32 and DestVT must be
an i8/i16/i32/i64.
rdar://17516686
llvm-svn: 212633
Currently AArch64FastISel crashes if it tries to extend an integer into an
MVT::i128. This can happen by creating 128 bit integers like so:
typedef unsigned int uint128_t __attribute__((mode(TI)));
typedef int sint128_t __attribute__((mode(TI)));
This patch makes EmitIntExt check for their presence and then falls back to
SelectionDAG.
Tests included.
rdar://17516686
llvm-svn: 212492
Previously we were abandonning the attempt, leading to some combination of
extra work (when selection of a load/store fails completely) and inferior code
(when this leads to a real memcpy call instead of inlining).
rdar://problem/17187463
llvm-svn: 210520
We were hitting an assert if FastISel couldn't create the load or store we
requested. Currently this happens for large frame-local addresses, though
CodeGen could be improved there.
rdar://problem/17187463
llvm-svn: 210519
This means the output of LowerFormalArguments returns a lowered
SDValue with the correct type (expected in SelectionDAGBuilder).
Without this, an assertion under a DEBUG macro triggers when those
types are passed on the stack.
llvm-svn: 210102
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759
We can eliminate the custom C++ code in favour of some TableGen to
check the same things. Functionality should be identical, except for a
buffer overrun that was present in the C++ code and meant webkit
failed if any small argument needed to be passed on the stack.
llvm-svn: 209636
The code emitted is what would be expected for the small model, so it
shouldn't be used when objects can be the full 64-bits away.
This fixes MCJIT tests on Linux.
llvm-svn: 209585
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577