visibility is enabled) or leave and re-enter it, restore the macro and module
visibility state from last time we were in that submodule.
This allows mutually-#including header files to stand a chance at being
modularized with local visibility enabled.
llvm-svn: 237871
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
the active module macros at the point of definition, rather than reconstructing
it from the macro history. No functionality change intended.
llvm-svn: 235941
Previously we'd defer this determination until writing the AST, which doesn't
allow us to use this information when building other submodules of the same
module. This change also allows us to use a uniform mechanism for writing
module macro records, independent of whether they are local or imported.
llvm-svn: 235614
This graph will be used to determine the current set of active macros. This is
foundation work for getting macro visibility correct across submodules of the
current module. No functionality change for now.
llvm-svn: 235461
ExpandBuiltinMacro would strip the identifier and downstream users crash
when they encounter an identifier token with nullptr identifier info.
Found by afl-fuzz.
llvm-svn: 233497
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
These calls are usually guarded by checks for isAnnotation() but it
looks like we missed a spot. This would cause the included test to
crash clang.
llvm-svn: 232616
This adds the -fapplication-extension option, along with the
ios_app_extension and macosx_app_extension availability attributes.
Patch by Ted Kremenek
llvm-svn: 230989
We would CreateString on arbitrary garbage instead of just skipping to
the end of the builtin macro. Eventually, this would cause us to crash
because we would end up replacing the contents of a character token with
a numeric literal.
This fixes PR21825.
llvm-svn: 224238
This means that a pointer to the struct type to which the attribute appertains
is a CF type (and therefore an Objective-C object of some type), but not of any
specific class. rdar://19157264
llvm-svn: 224072
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
#include_next interacts poorly with modules: it depends on where in the list of
include paths the current file was found. Files covered by module maps are not
found in include search paths when building the module (and are not found in
include search paths when @importing the module either), so this isn't really
meaningful. Instead, we fake up the result that #include_next *should* have
given: find the first path that would have resulted in the given file being
picked, and search from there onwards.
llvm-svn: 220177
In code-completion, don't assume there is a MacroInfo for everything,
since we aren't serializing the def corresponding to a later #undef in
the same module. Also setup the HadMacro bit correctly for undefs to
avoid an assertion failure.
rdar://18416901
llvm-svn: 218694
Changes diagnostic options, language standard options, diagnostic identifiers, diagnostic wording to use c++14 instead of c++1y. It also modifies related test cases to use the updated diagnostic wording.
llvm-svn: 215982
intent when we added remark support, but was never implemented in the general
case, because the first -R flags didn't need it. (-Rpass= had special handling
to accomodate its argument.)
-Rno-foo, -Reverything, and -Rno-everything can be used to turn off a remark,
or to turn on or off all remarks. Per discussion on cfe-commits, -Weverything
does not affect remarks, and -Reverything does not affect warnings or errors.
The only "real" -R flag we have right now is -Rmodule-build; that flag is
effectively renamed from -Wmodule-build to -Rmodule-build by this change.
-Wpass and -Wno-pass (and their friends) are also renamed to -Rpass and
-Rno-pass by this change; it's not completely clear whether we intended to have
a -Rpass (with no =pattern), but that is unchanged by this commit, other than
the flag name. The default pattern is effectively one which matches no passes.
In future, we may want to make the default pattern be .*, so that -Reverything
works for -Rpass properly.
llvm-svn: 215046
Summary:
The limits on the number of fix-it hints and ranges attached to a
diagnostic are arbitrary and don't apply universally to all users of the
DiagnosticsEngine. The way the limits are enforced may lead to diagnostics
generating invalid sets of fixes. I suggest removing the limits, which will also
simplify the implementation.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D3879
llvm-svn: 209468
At one point, -fexceptions was a synonym for -fcxx-exceptions. While
the driver options still enables cxx-exceptions by default, the cc1
flag is purely about exception tables and this doesn't account for
objective C exceptions. Because of this, checking for the
cxx_exceptions feature in objective C++ often gives the wrong answer.
The cxx_exceptions feature should be based on the -fcxx-exceptions cc1
flag, not -fexceptions. Furthermore, at some point the tests were
changed to use cc1 even though they were testing the driver behaviour.
We're better off testing both the driver and cc1 here.
llvm-svn: 206352
The -fms-extensions option affects a number of subtle front-end C/C++
behaviors, and it would be useful to be able to distinguish MS keywords
from regular identifiers in the ms-extensions mode even if the triple
does not define a Windows target. It should make life easier if anyone
needs to port their Windows codes to elsewhere.
Differential Revision: http://reviews.llvm.org/D3034
llvm-svn: 206069
Clean up the __has_attribute implementation without modifying its behavior.
Replaces the tablegen-driven AttrSpellings.inc, which lived in the lexing layer with AttrHasAttributeImpl.inc, which lives in the basic layer. Updates the preprocessor to call through to this new functionality which can take additional information into account (such as scopes and syntaxes).
Expose the ability for parts of the compiler to ask whether an attribute is supported for a given spelling (including scope), syntax, triple and language options.
llvm-svn: 205181
Replaces the tablegen-driven AttrSpellings.inc, which lived in the lexing layer with AttrHasAttributeImpl.inc, which lives in the basic layer. Updates the preprocessor to call through to this new functionality which can take additional information into account (such as scopes and syntaxes).
Expose the ability for parts of the compiler to ask whether an attribute is supported for a given spelling (including scope), syntax, triple and language options.
llvm-svn: 204952
it, importers of B should not see the macro. This is complicated by the fact
that A's macro could also be visible through a different path. The rules (as
hashed out on cfe-commits) are included as a documentation update in this
change.
With this, the number of regressions in libc++'s testsuite when modules are
enabled drops from 47 to 7. Those remaining 7 are also macro-related, and are
due to remaining bugs in this change (in particular, the handling of submodules
is imperfect).
llvm-svn: 202560
This C++ feature has been marked complete since r191549, but the documentation
claimed it wasn't supported at all and the extension check misreported it as
being available in C.
No regression test; this was a short-lived typo.
llvm-svn: 199292
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
This is approaching consistency but the PP and Parse categories they still have
slightly different wording:
def err_pp_expected_after : Error<"missing %1 after %0">;
def err_expected_after : Error<"expected %1 after %0">;
llvm-svn: 198189
Introduce proper facilities to render token spellings using the diagnostic
formatter.
Replaces most of the hard-coded diagnostic messages related to expected tokens,
which all shared the same semantics but had to be multiply defined due to
variations in token order or quote marks.
The associated parser changes are largely mechanical but they expose
commonality in whole chunks of the parser that can now be factored away.
This commit uses C++11 typed enums along with a speculative legacy fallback
until the transition is complete.
Requires corresponding changes in LLVM r197895.
llvm-svn: 197972
Summary: Some MS headers use these features.
Reviewers: rnk, rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1948
llvm-svn: 192936
Before this patch, Lex() would recurse whenever the current lexer changed (e.g.
upon entry into a macro). This patch turns the recursion into a loop: the
various lex routines now don't return a token when the current lexer changes,
and at the top level Preprocessor::Lex() now loops until it finds a token.
Normally, the recursion wouldn't end up being very deep, but the recursion depth
can explode in edge cases like a bunch of consecutive macros which expand to
nothing (like in the testcase test/Preprocessor/macro_expand_empty.c in this
patch).
<rdar://problem/14569770>
llvm-svn: 190980
Unlike C++11's "thread_local" keyword, C11's "_Thread_local" is in the
reserved namespace, meaning we provide it unconditionally; it is marked
as KEYALL in TokenKinds.def.
This means that like all the other C11 keywords, we can expose its
presence through __has_extension().
llvm-svn: 190755
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D966
llvm-svn: 187925
Beginning with svn r186971, we noticed an internal test started to fail when
using clang built with LTO. After much investigation, it turns out that there
are no blatant bugs here, we are just running out of stack space and crashing.
Preprocessor::ReadFunctionLikeMacroArgs already has one vector of 64 Tokens,
and r186971 added another. When built with LTO, that function is inlined into
Preprocessor::HandleMacroExpandedIdentifier, which for our internal test is
invoked in a deep recursive cycle. I'm leaving the original 64 Token vector
alone on the assumption that it is important for performance, but the new
FixedArgTokens vector is only used on an error path, so it should be OK if it
requires additional heap storage. It would be even better if we could avoid
the deep recursion, but I think this change is a good thing to do regardless.
<rdar://problem/14540345>
llvm-svn: 187315
This allows the ObjFW runtime to correctly implement message forwarding
for messages which return a struct.
Patch by Jonathan Schleifer.
llvm-svn: 187174
cxx_init_capture. "generalized" is neither descriptive nor future-proof. No
compatibility problems expected, since we've never advertised having this
feature.
llvm-svn: 187058
function-like macro. Clang will attempt to correct the arguments by detecting
braced initializer lists:
1) If possible, suggest parentheses around arguments
containing braced lists which will give the proper number of arguments.
2) If a braced list is detected at the start of a macro argument, it cannot be
corrected by parentheses. Instead, just point out the location of these
braced lists.
llvm-svn: 186971
This allows clang to parse the type_traits header in Visual Studio 2012,
which is included widely in practice.
This is a rework of r163022 by João Matos. The original patch broke
preprocessing of gtest headers, which this patch addresses.
Patch by Will Wilson!
llvm-svn: 184968
Add __has_feature and __has_extension checks for C++1y features (based on the provisional names from
the C++ features study group), and update documentation to match.
llvm-svn: 181342
Also update "test/Modules/macros.c" to test modified semantics:
-When there is an ambiguous macro, expand using the latest introduced version, not the first one.
-#undefs in submodules cause the macro to not be exported by that submodule, it doesn't cause
undefining of macros in the translation unit that imported that submodule.
This reduces macro namespace interference across modules.
llvm-svn: 178105
For each macro directive (define, undefine, visibility) have a separate object that gets chained
to the macro directive history. This has several benefits:
-No need to mutate a MacroDirective when there is a undefine/visibility directive. Stuff like
PPMutationListener become unnecessary.
-No need to keep extra source locations for the undef/visibility locations for the define directive object
(which is the majority of the directives)
-Much easier to hide/unhide a section in the macro directive history.
-Easier to track the effects of the directives across different submodules.
llvm-svn: 178037
-Serialize the macro directives history into its own section
-Get rid of the macro updates section
-When de/serializing an identifier from a module, associate only one macro per
submodule that defined+exported it.
llvm-svn: 177761
for the data specific to a macro definition (e.g. what the tokens are), and
MacroDirective class which encapsulates the changes to the "macro namespace"
(e.g. the location where the macro name became active, the location where it was undefined, etc.)
(A MacroDirective always points to a MacroInfo object.)
Usually a macro definition (MacroInfo) is where a macro name becomes active (MacroDirective) but
splitting the concepts allows us to better model the effect of modules to the macro namespace
(also as a bonus it allows better modeling of push_macro/pop_macro #pragmas).
Modules can have their own macro history, separate from the local (current translation unit)
macro history; MacroDirectives will be used to model the macro history (changes to macro namespace).
For example, if "@import A;" imports macro FOO, there will be a new local MacroDirective created
to indicate that "FOO" became active at the import location. Module "A" itself will contain another
MacroDirective in its macro history (at the point of the definition of FOO) and both MacroDirectives
will point to the same MacroInfo object.
Introducing the separation of macro concepts is the first part towards better modeling of module macros.
llvm-svn: 175585
that redefined a macro without undef'ing it first.
Proper reconstruction of the macro info history from modules will properly fix this in subsequent commits.
rdar://13016031
llvm-svn: 173281
Makes sure that a deserialized macro is only added to the preprocessor macro definitions only once.
Unfortunately I couldn't get a reduced test case.
rdar://13016031
llvm-svn: 172843
Previously we would serialize the macro redefinitions as a list, part of
the identifier, and try to chain them together across modules individually
without having the info that they were already chained at definition time.
Change this by serializing the macro redefinition chain and then try
to synthesize the chain parts across modules. This allows us to correctly
pinpoint when 2 different definitions are ambiguous because they came from
unrelated modules.
Fixes bogus "ambiguous expansion of macro" warning when a macro in a PCH
is redefined without undef'ing it first.
rdar://13016031
llvm-svn: 172620
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
common LexStringLiteral function. In doing so, some consistency problems have
been ironed out (e.g. where the first token in the string literal was lexed
with macro expansion, but subsequent ones were not) and also an erroneous
diagnostic has been corrected.
LexStringLiteral is complemented by a FinishLexStringLiteral function which
can be used in the situation where the first token of the string literal has
already been lexed.
llvm-svn: 168266
the related comma pasting extension.
In certain cases, we used to get two diagnostics for what is essentially one
extension. This change suppresses the first diagnostic in certain cases
where we know we're going to print the second diagnostic. The
diagnostic is redundant, and it can't be suppressed in the definition
of the macro because it points at the use of the macro, so we want to
avoid printing it if possible.
The implementation works by detecting constructs which look like comma
pasting at the time of the definition of the macro; this information
is then used when the macro is used. (We can't actually detect
whether we're using the comma pasting extension until the macro is
actually used, but we can detecting constructs which will be comma
pasting if the varargs argument is elided.)
<rdar://problem/12292192>
llvm-svn: 167907
macro history.
When deserializing macro history, we arrange history such that the
macros that have definitions (that haven't been #undef'd) and are
visible come at the beginning of the list, which is what the
preprocessor and other clients of Preprocessor::getMacroInfo()
expect. If additional macro definitions become visible later, they'll
be moved toward the front of the list. Note that it's possible to have
ambiguities, but we don't diagnose them yet.
There is a partially-implemented design decision here that, if a
particular identifier has been defined or #undef'd within the
translation unit, that definition (or #undef) hides any macro
definitions that come from imported modules. There's still a little
work to do to ensure that the right #undef'ing happens.
Additionally, we'll need to scope the update records for #undefs, so
they only kick in when the submodule containing that update record
becomes visible.
llvm-svn: 165682
Summary: Passes all tests (+ the new one with code completion), but needs a thorough review in part related to modules.
Reviewers: doug.gregor
Reviewed By: alexfh
CC: cfe-commits, rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D41
llvm-svn: 164610
specific module (__building_module(modulename)) and to get the name of
the current module as an identifier (__MODULE__).
Used to help headers behave differently when they're being included as
part of building a module. Oh, the irony.
llvm-svn: 164605
(__is_pod, __is_signed, etc.) to normal identifiers if they are
encountered in certain places in the grammar where we know that prior
versions of libstdc++ or libc++ use them, to still allow the use of
these keywords as type traits. Fixes <rdar://problem/9836262> and PR10184.
llvm-svn: 162937
within its own argument list. The original definition is used for the immediate
expansion, but the new definition is used for any subsequent occurences within
the argument list or after the expansion.
llvm-svn: 162906
Summary:
The problem was with the following sequence:
#pragma push_macro("long")
#undef long
#pragma pop_macro("long")
in case when "long" didn't represent a macro.
Fixed crash and removed code duplication for #undef/pop_macro case. Added regression tests.
Reviewers: doug.gregor, klimek
Reviewed By: doug.gregor
CC: cfe-commits, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D31
llvm-svn: 162845
Summary:
Summary: Keep history of macro definitions and #undefs with corresponding source locations, so that we can later find out all macros active in a specified source location. We don't save the history in PCH (no need currently). Memory overhead is about sizeof(void*)*3*<number of macro definitions and #undefs>+<in-memory size of all #undef'd macros>
I've run a test on a file composed of 109 .h files from boost 1.49 on x86-64 linux.
Stats before this patch:
*** Preprocessor Stats:
73222 directives found:
19171 #define.
4345 #undef.
#include/#include_next/#import:
5233 source files entered.
27 max include stack depth
19210 #if/#ifndef/#ifdef.
2384 #else/#elif.
6891 #endif.
408 #pragma.
14466 #if/#ifndef#ifdef regions skipped
80023/451669/1270 obj/fn/builtin macros expanded, 85724 on the fast path.
127145 token paste (##) operations performed, 11008 on the fast path.
Preprocessor Memory: 5874615B total
BumpPtr: 4399104
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
Stats with this patch:
...
Preprocessor Memory: 7541687B total
BumpPtr: 6066176
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
In my test increase in memory usage is about 1.7Mb, which is ~28% of initial preprocessor's memory usage and about 0.8% of clang's total VMM allocation.
As for CPU overhead, it should only be noticeable when iterating over all macros, and should mostly consist of couple extra dereferences and one comparison per macro + skipping of #undef'd macros. It's less trivial to measure, though, as the preprocessor consumes a very small fraction of compilation time.
Reviewers: doug.gregor, klimek, rsmith, djasper
Reviewed By: doug.gregor
CC: cfe-commits, chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D28
llvm-svn: 162810
diagnostics for bad deployment targets and adding a few
more predicates. Includes a patch by Jonathan Schleifer
to enable ARC for ObjFW.
llvm-svn: 162252
This tests for the ability to include a "message" field in availability
attributes, like so:
extern void ATSFontGetName(const char *oName)
__attribute__((availability(macosx,introduced=8.0,deprecated=9.0,
message="use CTFontCopyFullName")));
This was actually supported in Clang 3.1, but we got a request for a
__has_feature so that header files can use this more safely. It's
unfortunate that the 3.1 release doesn't include this, however.
<rdar://problem/11886458>
llvm-svn: 160699
places. I've turned this off for the GNU runtimes --- I don't know if
they support weak class import, but it's easy enough for them to opt in.
Also tweak a comment per review by Jordan.
llvm-svn: 158860
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
The original r158700 caused crashes in the gcc test suite,
g++.abi/vtable3a.C among others. It also caused failures in the libc++
test suite.
llvm-svn: 158749
Note that this is mostly a structural patch that handles the change from the old
spelling style to the new one. One consequence of this is that all AT_foo_bar
enum values have changed to not be based off of the first spelling, but rather
off of the class name, so they are now AT_FooBar and the like (a straw poll on
IRC showed support for this). Apologies for code churn.
Most attributes have GNU spellings as a temporary solution until everything else
is sorted out (such as a Keyword spelling, which I intend to add if someone else
doesn't beat me to it). This is definitely a WIP.
I've also killed BaseCheckAttr since it was unused, and I had to go through
every attribute anyway.
llvm-svn: 158700