These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.
Differential Revision: https://reviews.llvm.org/D78067
This revision moves the various range utilities present in MLIR to LLVM to enable greater reuse. This revision moves the following utilities:
* indexed_accessor_*
This is set of utility iterator/range base classes that allow for building a range class where the iterators are represented by an object+index pair.
* make_second_range
Given a range of pairs, returns a range iterating over the `second` elements.
* hasSingleElement
Returns if the given range has 1 element. size() == 1 checks end up being very common, but size() is not always O(1) (e.g., ilist). This method provides O(1) checks for those cases.
Differential Revision: https://reviews.llvm.org/D78064
This revision moves several type_trait utilities from MLIR into LLVM. Namely, this revision adds:
is_detected - This matches the experimental std::is_detected
is_invocable - This matches the c++17 std::is_invocable
function_traits - A utility traits class for getting the argument and result types of a callable type
Differential Revision: https://reviews.llvm.org/D78059
Summary: Functional.h contains many different methods that have a direct, and more efficient, equivalent in LLVM. This revision replaces all usages with the LLVM equivalent, and removes the header. This is part of larger cleanup, pr45513, merging MLIR support facilities into LLVM.
Differential Revision: https://reviews.llvm.org/D78053
Summary: This revision makes the registration of command line options for these two files manual with `registerMLIRContextCLOptions` and `registerAsmPrinterCLOptions` methods. This removes the last remaining static constructors within lib/.
Differential Revision: https://reviews.llvm.org/D77960
Summary: std::function has a notoriously large amount of malloc traffic, whereas function_ref is a cheaper and more efficient alternative.
Differential Revision: https://reviews.llvm.org/D77959
Summary:
Identifier doesn't maintain a length, so every time strref() is called,
it does a strlen. In the case of comparisons, this isn't necessary:
there is no need to scan a string to get its length, then rescan it to
do the comparison. Just done one comparison.
This also moves some assertions in Identifier::get as another
microoptimization for 'assertions enabled' modes.
Reviewers: rriddle!
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77958
Summary: ClassID is a bit janky right now as it involves passing a magic pointer around. This revision hides the internal implementation mechanism within a new class TypeID. This class is a value-typed wrapper around the original ClassID implementation.
Differential Revision: https://reviews.llvm.org/D77768
Summary: This avoids adding any additional global constructors, like cl::opt. There is a temporary exception on IR/, which has a few cl::opts that require a bit of plumbing to remove.
Differential Revision: https://reviews.llvm.org/D77824
Summary:
This revision adds a tool that generates the ODS and C++ implementation for "named" Linalg ops according to the [RFC discussion](https://llvm.discourse.group/t/rfc-declarative-named-ops-in-the-linalg-dialect/745).
While the mechanisms and language aspects are by no means set in stone, this revision allows connecting the pieces end-to-end from a mathematical-like specification.
Some implementation details and short-term decisions taken for the purpose of bootstrapping and that are not set in stone include:
1. using a "[Tensor Comprehension](https://arxiv.org/abs/1802.04730)-inspired" syntax
2. implicit and eager discovery of dims and symbols when parsing
3. using EDSC ops to specify the computation (e.g. std_addf, std_mul_f, ...)
A followup revision will connect this tool to tablegen mechanisms and allow the emission of named Linalg ops that automatically lower to various loop forms and run end to end.
For the following "Tensor Comprehension-inspired" string:
```
def batch_matmul(A: f32(Batch, M, K), B: f32(K, N)) -> (C: f32(Batch, M, N)) {
C(b, m, n) = std_addf<k>(std_mulf(A(b, m, k), B(k, n)));
}
```
With -gen-ods-decl=1, this emits (modulo formatting):
```
def batch_matmulOp : LinalgNamedStructured_Op<"batch_matmul", [
NInputs<2>,
NOutputs<1>,
NamedStructuredOpTraits]> {
let arguments = (ins Variadic<LinalgOperand>:$views);
let results = (outs Variadic<AnyRankedTensor>:$output_tensors);
let extraClassDeclaration = [{
llvm::Optional<SmallVector<StringRef, 8>> referenceIterators();
llvm::Optional<SmallVector<AffineMap, 8>> referenceIndexingMaps();
void regionBuilder(ArrayRef<BlockArgument> args);
}];
let hasFolder = 1;
}
```
With -gen-ods-impl, this emits (modulo formatting):
```
llvm::Optional<SmallVector<StringRef, 8>> batch_matmul::referenceIterators() {
return SmallVector<StringRef, 8>{ getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getReductionIteratorTypeName() };
}
llvm::Optional<SmallVector<AffineMap, 8>> batch_matmul::referenceIndexingMaps()
{
MLIRContext *context = getContext();
AffineExpr d0, d1, d2, d3;
bindDims(context, d0, d1, d2, d3);
return SmallVector<AffineMap, 8>{
AffineMap::get(4, 0, {d0, d1, d3}),
AffineMap::get(4, 0, {d3, d2}),
AffineMap::get(4, 0, {d0, d1, d2}) };
}
void batch_matmul::regionBuilder(ArrayRef<BlockArgument> args) {
using namespace edsc;
using namespace intrinsics;
ValueHandle _0(args[0]), _1(args[1]), _2(args[2]);
ValueHandle _4 = std_mulf(_0, _1);
ValueHandle _5 = std_addf(_2, _4);
(linalg_yield(ValueRange{ _5 }));
}
```
Differential Revision: https://reviews.llvm.org/D77067
Summary:
This revision adds support to lower 1-D vector transfers to LLVM.
A mask of the vector length is created that compares the base offset + linear index to the dim of the vector.
In each position where this does not overflow (i.e. offset + vector index < dim), the mask is set to 1.
A notable fact is that the lowering uses llvm.dialect_cast to allow writing code in the simplest form by targeting the simplest mix of vector and LLVM dialects and
letting other conversions kick in.
Differential Revision: https://reviews.llvm.org/D77703
Minor fixes and cleanup for ShapedType accessors, use
ShapedType::kDynamicSize, add ShapedType::isDynamicDim.
Differential Revision: https://reviews.llvm.org/D77710
Summary: Pass options are a better choice for various reasons and avoid the need for static constructors.
Differential Revision: https://reviews.llvm.org/D77707
Summary: Diagnostics may be cached in the parallel diagnostic handler to preserve proper ordering. Storing the Operation as a DiagnosticArgument is problematic as the operation may be erased or changed before it finally gets printed.
Differential Revision: https://reviews.llvm.org/D77675
Summary: This revision updates the value numbering when printing to number from the next parent operation that is isolated from above. This is the highest level to number from that still ensures thread-safety. This revision also changes the behavior of Operator::operator<< to use local scope to avoid thread races when numbering operations.
Differential Revision: https://reviews.llvm.org/D77525
Summary: Blocks are numbered locally within a region, so numbering above the parent region is unnecessary.
Differential Revision: https://reviews.llvm.org/D77510
Even if this indicates in general a problem at call sites, the printer
is used for debugging and avoiding crashing is friendlier for example
when used in diagnostics or other printer.
Differential Revision: https://reviews.llvm.org/D77481
Add a pattern rewriter utility to erase blocks (while notifying the
pattern rewriting driver of the erased ops). Use this to remove trivial
else blocks in affine.if ops.
Differential Revision: https://reviews.llvm.org/D77083
Summary: This revision adds support for marking the last region as variadic in the ODS region list with the VariadicRegion directive.
Differential Revision: https://reviews.llvm.org/D77455
Summary: It is a very common user trap to think that the location printed along with the diagnostic is the same as the current operation that caused the error. This revision changes the behavior to always print the current operation, except for when diagnostics are being verified. This is achieved by moving the command line flags in IR/ to be options on the MLIRContext.
Differential Revision: https://reviews.llvm.org/D77095
PatternRewriter and derived classes provide a set of virtual methods to
manipulate blocks, which ConversionPatternRewriter overrides to keep track of
the manipulations and undo them in case the conversion fails. However, one can
currently create a block only by splitting another block into two. This not
only makes the API inconsistent (`splitBlock` is allowed in conversion
patterns, but `createBlock` is not), but it also make it impossible for one to
create blocks with argument lists different from those of already existing
blocks since in-place block updates are not supported either. Such
functionality precludes dialect conversion infrastructure from being used more
extensively on region-containing ops, for example, for value-returning "if"
operations. At the same time, ConversionPatternRewriter already allows one to
undo block creation as block creation is one of the primitive operations in
already supported region inlining.
Support block creation in conversion patterns by hooking `createBlock` on the
block action undo mechanism. This requires to make `Builder::createBlock`
virtual, similarly to Op insertion. This is a minimal change to the Builder
infrastructure that will later help support additional use cases such as block
signature changes. `createBlock` now additionally takes the types of the block
arguments that are added immediately so as to avoid in-place argument list
manipulation that would be illegal in conversion patterns.
Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
Summary:
The commit provides a single method to build affine maps with zero or more
results. Users of mlir::AffineMap previously had to dispatch between two methods
depending on the number of results.
At the same time, this commit fixes the method for building affine map with zero
results that was previously ignoring its `symbolCount` argument.
Differential Revision: https://reviews.llvm.org/D77126
Summary: This revision updates the SourceMgrDiagnosticHandler to not print the source location of a note if it is the same location as the previously printed diagnostic. This helps avoid redundancy, and potential confusion, when looking at the diagnostic output.
Differential Revision: https://reviews.llvm.org/D76787
Summary:
This allows the custom parser/printer hooks to do interesting things with
the SSA names. This patch:
- Adds a new 'getResultName' method to OpAsmParser that allows a parser
implementation to get information about its result names, along with
a getNumResults() method that allows op parser impls to know how many
results are expected.
- Adds a OpAsmPrinter::printOperand overload that takes an explicit stream.
- Adds a test.string_attr_pretty_name operation that uses these hooks to
do fancy things with the result name.
Reviewers: rriddle!
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76205
Builder::get{I32,I64}VectorAttr are actually of limited applicability since
vector types can't have zero elements, whereas many uses of this kind of
attribute (such as dimension lists for "transpose"-like and other tensor
ops) often can result in empty lists.
Differential Revision: https://reviews.llvm.org/D76403
Summary:
With the move towards dialect registration that does not depend only use
static initialization, we are running into more cases where the dialects
are registered by different methods. For example, TensorFlow still uses
static initialization to register all MLIR core dialects, which prevents
explicit registration of any of them when linking it in. We ran into this
issue in https://github.com/google/iree/pull/982.
To address potential issues with conflicts from non-standard
allocators passed to registerDialectAllocator, made this method
private. Now all dialects can only be registered with their
constructor.
Similarly deduplicates DialectHooks for consistency and makes their
registration follow the same pattern.
Differential Revision: https://reviews.llvm.org/D76329
Previously in SPIRVTypeConverter, we always convert memref types
to StorageBuffer regardless of their memory spaces. This commit
fixes that to let the conversion to look into memory space
properly. For this purpose, a mapping between SPIR-V storage class
and memref memory space is introduced. The mapping is arbitary
decided at the moment and the hope is that we can leverage
string memory space later to be more clear.
Now spv.interface_var_abi cannot contain storage class unless it's
attached to a scalar value, where we need the storage class as side
channel information. Verifications and tests are properly adjusted.
Differential Revision: https://reviews.llvm.org/D76241
Summary: PatternState was a mechanism to pass state between the match and rewrite calls of a RewritePattern. With the rise of matchAndRewrite, this class is unused and unnecessary. This revision removes PatternState and simplifies PatternMatchResult to just be a LogicalResult. A future revision will replace all usages of PatternMatchResult/matchSuccess/matchFailure with LogicalResult equivalents.
Differential Revision: https://reviews.llvm.org/D76202
The current mechanism for identifying is a bit hacky and extremely adhoc, i.e. we explicit check 1-result, 0-operand, no side-effect, and always foldable and then assume that this is a constant. Adding a trait adds structure to this, and makes checking for a constant much more efficient as we can guarantee that all of these things have already been verified.
Differential Revision: https://reviews.llvm.org/D76020
Summary: In some situations the name of the attribute is not representable as a bare-identifier, this revision adds support for those cases by formatting the name as a string instead. This has the added benefit of removing the identifier regex from the verifier.
Differential Revision: https://reviews.llvm.org/D75973
Summary:
Interfaces/ is the designated directory for these types of interfaces, and also removes the need for including them directly in IR/.
Differential Revision: https://reviews.llvm.org/D75886
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
This revision takes advantage of the empty AffineMap to specify the
0-D edge case. This allows removing a bunch of annoying corner cases
that ended up impacting users of Linalg.
Differential Revision: https://reviews.llvm.org/D75831