A program or object file using R_386_8, R_386_16, R_386_PC16 or R_386_PC8
relocations is not conformant to latest ABI. The R_386_16, and R_386_8
relocations truncate the computed value to 16 - bits and 8 - bits
respectively. R_386_PC16 and R_386_16 are used by some
applications, for example by FreeBSD loaders.
Previously we did not take addend in account for these relocation,
counting it as 0, what is wrong and was a reason of hangs.
This patch needed for example for FreeBSD pmbr (protective mbr).
Differential revision: https://reviews.llvm.org/D27303
llvm-svn: 288581
It looks like the way dtrace works is
* The user creates .o files that reference magical symbol names.
* dtrace reads those files, collecs the info it needs and changes the
relocation to R_X86_64_NONE expecting the linker to ignore them.
llvm-svn: 288485
The module index dynamic relocation R_ARM_DTPMOD32 is always 1 for an
executable. When static linking and when we know that we are not a shared
object we can resolve the module index relocation statically.
The logic in handleNoRelaxTlsRelocation remains the same for Mips as it
has its own custom GOT writing code. For ARM we add the module index
relocation to the GOT when it can be resolved statically.
In addition the type of the RelExpr for the static resolution of TlsGotRel
should be R_TLS and not R_ABS as we need to include the size of
the thread control block in the calculation.
Addresses the TLS part of PR30218.
Differential revision: https://reviews.llvm.org/D27213
llvm-svn: 288153
Right now we just remember a SymbolBody for each got entry and
duplicate a bit of logic to decide what value, if any, should be
written for that SymbolBody.
With ARM there will be more complicated values, and it seems better to
just use the relocation code to fill the got entries. This makes it
clear that each entry is filled by the dynamic linker or by the static
linker.
llvm-svn: 288107
We have different functions to stringize objects to construct
error messages. For InputFile, we have getFilename, and for
InputSection, we have getName. You had to memorize them.
I think this is the case where the function overloading comes in handy.
This patch defines toString() functions that are overloaded for all these
types, so that you just call it in error().
Differential Revision: https://reviews.llvm.org/D27030
llvm-svn: 287787
Align to the large page size (known as a superpage or huge page).
FreeBSD automatically promotes large, superpage-aligned allocations.
Differential Revision: https://reviews.llvm.org/D27042
llvm-svn: 287782
MIPS GOT handling is very different from other targets so it is better
to keep the code in the separatre section class MipsGotSection. This
patch introduces the new section and moves all MIPS specific code from
GotSection to the new class. I did not rename fields and methods in the
MipsGotSection class to reduce the diff and plan to do that by the
separate commit.
Differential revision: https://reviews.llvm.org/D26733
llvm-svn: 287150
This patch introduces the following changes:
- DynamicSection now inherits InputSection<ELFT> and was moved
to SyntheticSections.h/.cpp.
- Link and Entsize fields of DynamicSection are propagated to
its output section
- In<ELFT>::SyntheticSections was removed.
- Finalization of synthetic sections was removed from
OutputSection<ELFT>::finalize. Now finalizeSyntheticSections is
used instead.
Differential revision: https://reviews.llvm.org/D26603
llvm-svn: 286950
This is similar to what was done for InputSection.
With this the various fields are stored in host order and only
converted to target order when writing.
llvm-svn: 286327
In short the patch introduces support for linking object file conform
MIPS N32 ABI [1]. This ABI is similar to N64 ABI but uses 32-bit
pointer size.
The most non-trivial requirement of this ABI is one more relocation
packing format. N64 ABI puts multiple relocation type into the single
relocation record. The N32 ABI uses series of successive relocations
with the same offset for this purpose. In this patch, new function
`mergeMipsN32RelTypes` handle this case and "convert" N32 relocation to
the N64 relocation so the rest of the code keep unchanged.
For now, linker does not support series of relocations applied to sections
without SHF_ALLOC bit. Probably later I will add the support or insert
some sort of assert into the `relocateNonAlloc` routine to catch this
case.
[1] ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/MIPS-N32-ABI-Handbook.pdf
Differential revision: https://reviews.llvm.org/D26298
llvm-svn: 286052
An undefined weak reference is given an address of 0 this will
incorrectly trigger the creation of a Thumb to ARM interworking Thunk
if there is a Thumb branch instruction to the symbol. This results in
an error as Thunks only make sense to defined or shared symbols.
We prevent this by detecting an undefined symbol and not creating a thunk
for it.
Differential Revision: https://reviews.llvm.org/D26239
llvm-svn: 285896
Some MIPS relocations used to access GOT entries are able to manipulate
16-bit index. The other ones like R_MIPS_CALL_HI16/LO16 can handle
32-bit indexes. 16-bit relocations are generated by default. The 32-bit
relocations are generated by -mxgot flag passed to compiler. Usually
these relocation are not mixed in the same code but files like crt*.o
contain 16-bit relocations so even if all "user's" code compiled with
-mxgot flag a few 16-bit relocations might come to the linking phase.
Now LLD does not differentiate local GOT entries accessed via a 16-bit
and 32-bit indexes. That might lead to relocation's overflow if 16-bit
entries are allocated to far from the beginning of the GOT.
The patch introduces new "part" of MIPS GOT dedicated to the local GOT
entries accessed by 32-bit relocations. That allows to put local GOT
entries accessed via a 16-bit index first and escape relocation's overflow.
Differential revision: https://reviews.llvm.org/D25833
llvm-svn: 284809
This is needed for the following case (OpenCL example):
__global int Var = 0;
__global int* Ptr[] = {&Var};
...
Differential Revision: https://reviews.llvm.org/D25815
llvm-svn: 284764
The R_ARM_PREL31 and R_ARM_NONE relocations should not be faulted in
shared libraries. In the case of R_ARM_NONE, we have moved the TLS
relaxation hint instruction to R_TLSDESC_CALL so that R_HINT can be used
without side-effects. In the case of R_ARM_PREL31 we permit it to be used
against PLT entries as the personality routines are imported when used in
shared libraries.
Differential Revision: https://reviews.llvm.org/D25721
llvm-svn: 284710
The R_ARM_TARGET2 relocation is used in ARM exception tables to encode
a data dependency that will only be dereferenced by code in the
run-time support library. In a similar way to R_ARM_TARGET1 the
handling of the relocation is target specific, it maps to one of
R_ARM_ABS32, R_ARM_REL32 or R_ARM_GOT_PREL. The choice depends on the
run-time library. R_ARM_GOT_PREL is used for linux and BSD,
R_ARM_ABS32 and R_ARM_REL32 are used for bare-metal.
The command line option --target2=<target> can be used to select the
relocation used for R_ARM_TARGET2. The default is R_ARM_GOT_PREL.
Differential revision: https://reviews.llvm.org/D25684
llvm-svn: 284404
In case of linking PIC and non-PIC code together and generation of a
relocatable object, all PIC symbols should have STO_MIPS_PIC flag in the
symbol table of the ouput file.
llvm-svn: 282714
This matches the behavior of Binutils linkers. We also change the
default MaxPageSize on x86-64 to 0x1000 to preserver the current
behavior, which is the same as the behavior implemented by gold.
https://llvm.org/bugs/show_bug.cgi?id=30541
Differential Revision: https://reviews.llvm.org/D24987
llvm-svn: 282560
Target->RelativeRel is used for all platforms, but AMDGPU did
not send that member.
Fixes bug 30227 - RelativeRel is used, but not initialized for AMDGPU.
Differential Revision: https://reviews.llvm.org/D24100
llvm-svn: 280291
TLS on i386 in non-PIE/PIC code seems broken right now, because we don't
properly add the addend encoded in the instruction to the resulting
offset when processing R_386_TLS_LE relocations.
Extend one of the existing tests for TLS on i686 to use an addend.
PR: https://llvm.org/bugs/show_bug.cgi?id=29068
Reviewed by: ruiu
Differential Revision: https://reviews.llvm.org/D23741
llvm-svn: 279368
We will need to do something like this to support range extension
thunks since that process is iterative.
Doing this also has the advantage that when doing the regular
relocation scan the offset in the output section is known and we can
just store that. This reduces the number of times we have to run
getOffset and I think will allow a more specialized .eh_frame
representation.
By itself this is already a performance win.
firefox
master 7.295045737
patch 7.209466989 0.98826892235
chromium
master 4.531254468
patch 4.509221804 0.995137623774
chromium fast
master 1.836928973
patch 1.823805241 0.992855612714
the gold plugin
master 0.379768791
patch 0.380043405 1.00072310839
clang
master 0.642698284
patch 0.642215663 0.999249070657
llvm-as
master 0.036665467
patch 0.036456225 0.994293213284
the gold plugin fsds
master 0.40395817
patch 0.404384555 1.0010555177
clang fsds
master 0.722045545
patch 0.720946135 0.998477367518
llvm-as fsds
master 0.03292646
patch 0.032759965 0.994943428477
scylla
master 3.427376378
patch 3.368316181 0.98276810292
llvm-svn: 276146
- R_ARM_TLS_LDM32
- R_ARM_TLS_LDO32
The local dynamic implementation and tests follows the same model as
the other ARM TLS models. The R_ARM_TLS_LDO32 is implemented as R_ABS
expr type as the getVA() for a TLS symbol will return the offset from the
start of the TLS block.
Differential Revision https://reviews.llvm.org/D22563
llvm-svn: 276123
Add relocations and identification functions for the Initial Exec
and Global Dynamic TLS model defined in Addenda to, and Errata in,
the ABI for the ARM Architecture.
ARM uses variant 1 of the thread local storage data
structures as defined in ELF Handling for Thread-Local Storage.
The "experimental" descriptor based model that can be selected in
gcc, but not clang with -mtls-dialect=gnu2 is not supported.
The relocations R_ARM_TLS_LE12 and R_ARM_TLS_IE12GP are not
supported, I know of no ARM Toolchain that supports these relocations
as they limit the size of the TLS block.
No code relaxation is supported as the standard ARM TLS model puts
the relocations on literal data.
Support for the local dynamic model will come in a follow up patch.
Differential Revision: https://reviews.llvm.org/D22462
llvm-svn: 276095
r275301 made .got section be aligned on Target->GotEntrySize,
so GotEntrySize must have been initialized. We didn't initialize
it for AMDGPU.
llvm-svn: 275373
Patch by H.J Lu.
For x86-64 psABI, the entry size of .got and .got.plt sections is 8
bytes for both LP64 and ILP32. Add GotEntrySize and GotPltEntrySize
to ELF target instead of using size of ELFT::uint. Now we can generate
a simple working x32 executable.
Differential Revision: http://reviews.llvm.org/D22288
llvm-svn: 275301
Config members are named after corresponding command line options.
This patch renames VAStart ImageBase so that they are in line with
--image-base.
Differential Revision: http://reviews.llvm.org/D22277
llvm-svn: 275298
Patch by H.J. Lu.
As x86-64 psABI supports both LP64 and ILP32, this patch adds <ELFT>
template to X86_64TargetInfo.
Differential Revision: http://reviews.llvm.org/D22287
llvm-svn: 275235
Only MipsThunk were using the function, and the way how it wrote
thunk contents was different from ARM thunks. This patch makes
them consistent.
llvm-svn: 274997
The TinyPtrVector of const Thunk<ELFT>* in InputSections.h can cause
build failures on certain compiler/library combinations when Thunk<ELFT>
is not a complete type or is an abstract class. Fixed by making Thunk<ELFT>
non Abstract.
type or is an abstract class
llvm-svn: 274863
Generalise the Mips LA25 Thunk code and implement ARM and Thumb
interworking Thunks.
- Introduce a new module Thunks.cpp to store the Target Specific Thunk
implementations.
- DefinedRegular and Shared have a ThunkData field to record Thunk.
- A Target can have more than one type of Thunk.
- Support PC-relative calls to Thunks.
- Support Thunks to PLT entries.
- Existing Mips LA25 Thunk code integrated.
- Support for ARMv7A interworking Thunks.
Limitations:
- Only one Thunk per SymbolBody, this is sufficient for all currently
implemented Thunks.
- ARM thunks assume presence of V6T2 MOVT and MOVW instructions.
Differential revision: http://reviews.llvm.org/D21891
llvm-svn: 274836
The patch adds one more partition to the MIPS GOT. This time it is for
TLS related GOT entries. Such entries are located after 'local' and 'global'
ones. We cannot get a final offset for these entries at the time of
creation because we do not know size of 'local' and 'global' partitions.
So we have to adjust the offset later using `getMipsTlsOffset()` method.
All MIPS TLS relocations which need GOT entries operates MIPS style GOT
offset - 'offset from the GOT's beginning' - MipsGPOffset constant. That
is why I add new types of relocation expressions.
One more difference from othe ABIs is that the MIPS ABI does not support
any TLS relocation relaxations. I decided to make a separate function
`handleMipsTlsRelocation` and put MIPS TLS relocation handling code
there. It is similar to `handleTlsRelocation` routine and duplicates its
code. But it allows to make the code cleaner and prevent pollution of
the `handleTlsRelocation` by MIPS 'if' statements.
Differential Revision: http://reviews.llvm.org/D21606
llvm-svn: 273569
`Inst` and `Op` variables are removed since they are not always
point to an instruction nor an operand. For 5-byte MOV instruction,
Op points to an instruction, which is confusing.
llvm-svn: 273246
This patch is to rewrite the function with a table-lookup-ish approach
so that it can read as a series of "convert this pattern to this" pattern.
llvm-svn: 273238
There are two motivations for this patch. The first one is a preparation
for support MIPS TLS relocations. It might sound like a joke but for GOT
entries related to TLS relocations MIPS ABI uses almost regular approach
with creation of dynamic relocations for each GOT enty etc. But we need
to separate these 'regular' TLS related entries from MIPS specific local
and global parts of GOT. ABI declare simple solution - all TLS related
entries allocated at the end of GOT after local/global parts. The second
motivation it to support GOT relocations for non-preemptible symbols
with addends. If we have more than one GOT relocations against symbol S
with different addends we need to create GOT entries for each unique
Symbol/Addend pairs.
So we store all MIPS GOT entries in separate containers. For non-preemptible
symbols we have to maintain two data structures. The first one is MipsLocal
vector. Each entry corresponds to the GOT entry from the 'local' part
of the GOT contains the symbol's address plus addend. The second one
is MipsLocalMap. It is a map from Symbol/Addend pair to the GOT index.
Differential Revision: http://reviews.llvm.org/D21297
llvm-svn: 273127
PltZero (or PLT[0]) was an appropriate name for the little code
we have at beginning of the PLT section when we only supported x86
since the code for x86 just fits in the first PLT slot.
It's not the case anymore. The code for ARM64 occupies first two
slots, so PltZero spans PLT[0] and PLT[1], for example.
This patch renames it to avoid confusion.
llvm-svn: 272913
For ARM and MIPS, we don't need to call this function.
This patch passes a symbol instead of a PLT entry address
so that the target handler can call it if necessary.
llvm-svn: 272910
Add support for the R_ARM_THM relocations used in the objects present
in arm-linux-gnueabihf-gcc. These are:
R_ARM_THM_CALL
R_ARM_THM_JUMP11
R_ARM_THM_JUMP19
R_ARM_THM_JUMP24
R_ARM_THM_MOVT_ABS
R_ARM_THM_MOVW_ABS_NC
Interworking between ARM and Thumb is partially supported with BLX.
The R_ARM_CALL relocation for ARM instructions and R_ARM_THM_CALL
relocation for Thumb instructions will write out a BL or BLX depending
on the state of the Target.
Assumptions:
- Availability of BLX and extended range of Thumb 4-byte Branch
instructions.
- In relocateOne if (Val & 0x1) == 1 target is Thumb, 0 is ARM.
This will hold for objects that comply with the ABI for the
ARM architecture.
This is sufficient for hello world to work with a recent
arm-linux-gnueabihf distribution.
Limitations:
No interworking for R_ARM_JUMP24, R_ARM_THM_JUMP24, R_ARM_THM_JUMP19
and the deprecated R_ARM_PLT32 and R_ARM_PC24 instructions as these
cannot be written out as a BLX and need a state change thunk.
No range extension thunks. The R_ARM_JUMP24 and R_ARM_THM_CALL have a
range of 16Mb
llvm-svn: 272881
Previously message told us that relocations could
not be used when making shared object. That was
correct because message could appear (and it is expected)
when we linked executable.
Message should have being changed to something
that says we can't use a subset of relocations against shared
symbols.
Patch fixes the text.
llvm-svn: 272478
Add support for an ARM Target and the initial set of relocations
and PLT entries that are necessary for an ARM only hello world to
link. This has been tested against an ARM only sysroot from the
4.2.0 CodeSourcery Lite release.
Tests have been added to test/ELF for the support that has been
implemented.
Main limitations:
- No Thumb support
- Relocations incomplete
- No C++ exceptions support
- No TLS support
- No range extension or interworking veneer (thunk) support
- No Build Attribute support
- No Big-endian support
The deprecated relocations R_ARM_PLT32 and R_ARM_PC24 have been
implemented as these are used by the 4.2.0 CodeSourcery Lite release.
llvm-svn: 271993
This is mostly extracted from http://reviews.llvm.org/D18960.
The general idea for tlsdesc is that the two GD got entries are used
for a function pointer and its argument. The dynamic linker sets
both. In the non-dlopen case the dynamic linker sets the function to
the identity and the argument to the offset in the tls block.
All that the static linker has to do in the non-dlopen case is
relocate the code to point to the got entries and create a dynamic
relocation.
The dlopen case is more complicated, but can be implemented in another patch.
llvm-svn: 271569
Patch implements next relaxation from latest ABI:
"Convert memory operand of test and binop into immediate operand, where binop is one of adc, add, and, cmp, or,
sbb, sub, xor instructions, when position-independent code is disabled."
It is described in System V Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99.8 (https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf,
B.2 "B.2 Optimize GOTPCRELX Relocations").
Differential revision: http://reviews.llvm.org/D20793
llvm-svn: 271405
D15779 introduced basic approach to support new relaxations.
This patch implements relaxations for jmp and call instructions,
described in System V Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99.8 (https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf,
B.2 "B.2 Optimize GOTPCRELX Relocations")
Differential revision: http://reviews.llvm.org/D20622
llvm-svn: 270721
System V Application Binary Interface AMD64 Architecture Processor Supplement Draft Version 0.99.8
(https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf, B.2 "B.2 Optimize GOTPCRELX Relocations")
introduces possible relaxations for R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX.
That patch implements the next relaxation:
mov foo@GOTPCREL(%rip), %reg => lea foo(%rip), %reg
and also opens door for implementing all other ones.
Implementation was suggested by Rafael Ávila de Espíndola with few additions and testcases by myself.
Differential revision: http://reviews.llvm.org/D15779
llvm-svn: 270705
This makes it explicit that each R_RELAX_TLS_* is equivalent to some
other expression.
With this I think we are at a sweet spot for how much is done in
Target.cpp. I did experiment with moving *all* the value math out of it.
It has the advantage that we know the final value in target independent
code, but it gets quite verbose.
llvm-svn: 270277
This adds direct support for computing offsets from the thread pointer
for both variants. Of the architectures we support, variant 1 is used
only by aarch64 (but that doesn't seem to be documented anywhere.)
llvm-svn: 270243
Lazy binding is quite important for use case like a shared build of
llvm. Also, if someone wants to disable it, it is better done in the
compiler (disable plt generation).
The only reason to keep it is to make it easier to add a new
architecture. But it doesn't really help much as it is possible to start
with non lazy relocation and plt code but still let the generic part
create a dedicated .got.plt and .rela.plt.
llvm-svn: 269982
New names reflect purpose of corresponding GOT entries better.
Both expression types related to entries allocated in the 'local'
part of MIPS GOT. R_MIPS_GOT_LOCAL_PAGE is for entries contain 'page'
addresses. R_MIPS_GOT_LOCAL is for entries contain 'full' address.
llvm-svn: 269597
MIPS N64 ABI packs multiple relocations into the single relocation
record. In general, all up to three relocations can have arbitrary types.
In fact, Clang and GCC uses only a few combinations. For now, we support
two of them. That is allow to pass at least all LLVM test suite cases.
<any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
<any relocation> / R_MIPS_64 / R_MIPS_NONE
The first relocation is a 'real' relocation which is calculated using
the corresponding symbol's value. The second and the third relocations
used to modify result of the first one: extend it to 64-bit, extract
high or low part etc. For details, see part 2.9 'Relocation' at
https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
llvm-svn: 268876
MIPS N64 ABI packs multiple relocations into the single relocation
record. Particularly it requires to represent dynamic relative
relocation as a combination of R_MIPS_REL32 and R_MIPS_64 relocations.
llvm-svn: 268565
We were already checking for non relative relocations.
If we ever decide to add support for rw text segments this means we will
have a single spot to add the flag.
llvm-svn: 268558
These relocations introduced by MIPS N64 ABI. R_MIPS_GOT_DISP references
GOT entry with full symbol's address, R_MIPS_GOT_PAGE creates GOT entry
with address of memory page which includes symbol's address,
R_MIPS_GOT_OFST used together with R_MIPS_GOT_PAGE. This relocation
calculates offset from beginning of memory page to the symbol address.
llvm-svn: 268525
It is now used only for relocations that only set the low bits inside a
page. Everything else is handled by getRelExpr.
I will send a another review renaming and better documenting
isRelRelative.
llvm-svn: 267705
MIPS is the only target requires GOT header. We already have MIPS
specific code in the `GotSection` class, so move MIPS GOT header
generation there and delete redundant stuff like `GotHeaderEntriesNum`
field and `writeGotHeader` method.
Differential Revision: http://reviews.llvm.org/D19465
llvm-svn: 267460
These relocations are calculated as S + A - DTPREL or S + A - TPREL,
where DTPREL = TlsVA - 0x8000, TPREL = TlsVA - 0x7000. So the result
is relative to the TLS output section and is not an absolut value
The fix allows to escape creation of unnecessary dynamic relocations
in case of DSO linking.
llvm-svn: 266923