D101114 enforced proper version checks, which exposed a variety of version
mismatch issues in our tests. We previously changed the test inputs to
target 10.0, which was the simpler thing to do, but we should really
just have our lit.local.cfg default to targeting 10.15, which is what is done
here. We're not likely to ever have proper support for the older versions
anyway, as that would require more work for unclear benefit; for instance,
llvm-mc seems to generate a different compact unwind format for older macOS
versions, which would cause our compact-unwind.s test to fail.
Targeting 10.15 by default causes the following behavioral changes:
* `__mh_execute_header` is now a section symbol instead of an absolute symbol
* LC_BUILD_VERSION gets emitted instead of LC_VERSION_MIN_MACOSX. The former is
32 bytes in size whereas the latter is 16 bytes, so a bunch of hardcoded
address offsets in our tests had to be updated.
* >= 10.6 executables are PIE by default
Note that this diff was stacked atop of a local revert of most of the test
changes in rG8c17a875150f8e736e8f9061ddf084397f45f4c5, to make review easier.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D101119
We had got it backwards... the minimum version of the target
should be higher than the min version of the object files, presumably
since new platforms are backwards-compatible with older formats.
Fixes PR50078.
The original commit (aa05439c9c) broke many tests that had inputs too
new for our target platform (10.0). This commit changes the inputs to
target 10.0, which was the simpler thing to do, but we should really
just have our lit.local.cfg default to targeting 10.15... we're not
likely to ever have proper support for the older versions anyway. I will
follow up with a change to that effect.
Differential Revision: https://reviews.llvm.org/D101114
When parsing bitcode, convert LTO Symbols to LLD Symbols in order to perform
resolution. The "winning" symbol will then be marked as Prevailing at LTO
compilation time. This is similar to what the other LLD ports do.
This change allows us to handle `linkonce` symbols correctly, and to deal with
duplicate bitcode symbols gracefully. Previously, both scenarios would result in
an assertion failure inside the LTO code, complaining that multiple Prevailing
definitions are not allowed.
While at it, I also added basic logic around visibility. We don't do anything
useful with it yet, but we do check that its value is valid. LLD-ELF appears to
use it only to set FinalDefinitionInLinkageUnit for LTO, which I think is just a
performance optimization.
From my local experimentation, the linker itself doesn't seem to do anything
differently when encountering linkonce / linkonce_odr / weak / weak_odr. So I've
only written a test for one of them. LLD-ELF has more, but they seem to mostly
be testing the intermediate bitcode output of their LTO backend...? I'm far from
an expert here though, so I might very well be missing things.
Reviewed By: #lld-macho, MaskRay, smeenai
Differential Revision: https://reviews.llvm.org/D94342