Commit Graph

9 Commits

Author SHA1 Message Date
Nikita Popov 55b9146848 [MCPseudoProbe] Clean up includes (NFC)
This was including various things that don't appear to be used in
the header at all.
2021-10-09 10:31:15 +02:00
Hongtao Yu b9db70369b [CSSPGO] Split context string to deduplicate function name used in the context.
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size. This change split the context into a series of {name, offset, discriminator} tuples so function names used in the context can be replaced by the index into the name table and that significantly reduce the size consumed by context.

A follow-up improvement made in the compiler and profiling tools is to avoid reconstructing full context strings which is  time- and memory- consuming. Instead a context vector of `StringRef` is adopted to represent the full context in all scenarios. As a result, the previous prevalent profile map which was implemented as a `StringRef` is now engineered as an unordered map keyed by `SampleContext`. `SampleContext` is reshaped to using an `ArrayRef` to represent a full context for CS profile. For non-CS profile, it falls back to use `StringRef` to represent a contextless function name. Both the `ArrayRef` and `StringRef` objects are underpinned by real array and string objects that are stored in producer buffers. For compiler, they are maintained by the sample reader. For llvm-profgen, they are maintained in `ProfiledBinary` and `ProfileGenerator`. Full context strings can be generated only in those cases of debugging and printing.

When it comes to profile format, nothing has changed to the text format, though internally CS context is implemented as a vector. Extbinary format is only changed for CS profile, with an additional `SecCSNameTable` section which stores all full contexts logically in the form of `vector<int>`, which each element as an offset points to `SecNameTable`. All occurrences of contexts elsewhere are redirected to using the offset of `SecCSNameTable`.

Testing
This is no-diff change in terms of code quality and profile content (for text profile).

For our internal large service (aka ads), the profile generation is cut to half, with a 20x smaller string-based extbinary format generated.

The compile time of ads is dropped by 25%.

Differential Revision: https://reviews.llvm.org/D107299
2021-08-30 20:09:29 -07:00
Hongtao Yu 68d6c3e448 [CSSPGO] Additional cleanup as a follow-up to D107838 2021-08-10 19:04:20 -07:00
Hongtao Yu 78523516bc [CSSPGO] Do not use getCanonicalFnName in pseudo probe descriptor decoding
Pseudo probe descriptors are created very early in the pipeline where function names just come from the front end and are not yet decorated. So calling getCanonicalFnName on the function names in probe desc is basically a no-op, which also addes a depenency from MC to ProfileData unnessesarily.

Reviewed By: wenlei, wlei

Differential Revision: https://reviews.llvm.org/D107838
2021-08-10 18:24:39 -07:00
modimo 041b525141 [CSSPGO] Remove used of PseudoProbeAttributes::Reserved
D106861 added usage of PseudoProbeAttributes::Reserved as TailCall however this usage hasn't been committed/reviewed. Removing this usage.

Testing
ninja check-all

Reviewed By: wenlei

Differential Revision: https://reviews.llvm.org/D107514
2021-08-04 17:23:56 -07:00
jamesluox ee7d20e846 [CSSPGO] Migrate and refactor the decoder of Pseudo Probe
Migrate pseudo probe decoding logic in llvm-profgen to MC, so other LLVM-base program could reuse existing codes. Redesign object layout of encoded and decoded pseudo probes.

Reviewed By: hoy

Differential Revision: https://reviews.llvm.org/D106861
2021-08-04 09:21:34 -07:00
Hongtao Yu 705a4c149d [CSSPGO] Pseudo probe encoding and emission.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s

Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections.  The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. 

**ELF object emission**

The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.

Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication.  A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.

The format of `.pseudo_probe_desc` section looks like:

```
.section   .pseudo_probe_desc,"",@progbits
.quad   6309742469962978389  // Func GUID
.quad   4294967295           // Func Hash
.byte   9                    // Length of func name
.ascii  "_Z5funcAi"          // Func name
.quad   7102633082150537521
.quad   138828622701
.byte   12
.ascii  "_Z8funcLeafi"
.quad   446061515086924981
.quad   4294967295
.byte   9
.ascii  "_Z5funcBi"
.quad   -2016976694713209516
.quad   72617220756
.byte   7
.ascii  "_Z3fibi"
```

For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :

```
FUNCTION BODY (one for each outlined function present in the text section)
    GUID (uint64)
        GUID of the function
    NPROBES (ULEB128)
        Number of probes originating from this function.
    NUM_INLINED_FUNCTIONS (ULEB128)
        Number of callees inlined into this function, aka number of
        first-level inlinees
    PROBE RECORDS
        A list of NPROBES entries. Each entry contains:
          INDEX (ULEB128)
          TYPE (uint4)
            0 - block probe, 1 - indirect call, 2 - direct call
          ATTRIBUTE (uint3)
            reserved
          ADDRESS_TYPE (uint1)
            0 - code address, 1 - address delta
          CODE_ADDRESS (uint64 or ULEB128)
            code address or address delta, depending on ADDRESS_TYPE
    INLINED FUNCTION RECORDS
        A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
        callees.  Each record contains:
          INLINE SITE
            GUID of the inlinee (uint64)
            ID of the callsite probe (ULEB128)
          FUNCTION BODY
            A FUNCTION BODY entry describing the inlined function.
```

To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.

**Assembling**

Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.

A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.

A example assembly looks like:

```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```

With inlining turned on, the assembly may look different around %bb2 with an inlined probe:

```
# %bb.2:                                # %bb2
.pseudoprobe    837061429793323041 3 0
.pseudoprobe    6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe    837061429793323041 4 0
popq    %rax
retq
```

**Disassembling**

We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.

An example disassembly looks like:

```
00000000002011a0 <foo2>:
  2011a0: 50                    push   rax
  2011a1: 85 ff                 test   edi,edi
  [Probe]:  FUNC: foo2  Index: 1  Type: Block
  2011a3: 74 02                 je     2011a7 <foo2+0x7>
  [Probe]:  FUNC: foo2  Index: 3  Type: Block
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  [Probe]:  FUNC: foo   Index: 1  Type: Block  Inlined: @ foo2:6
  2011a5: 58                    pop    rax
  2011a6: c3                    ret
  [Probe]:  FUNC: foo2  Index: 2  Type: Block
  2011a7: bf 01 00 00 00        mov    edi,0x1
  [Probe]:  FUNC: foo2  Index: 5  Type: IndirectCall
  2011ac: ff d6                 call   rsi
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  2011ae: 58                    pop    rax
  2011af: c3                    ret
```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91878
2020-12-10 17:29:28 -08:00
Mitch Phillips 7ead5f5aa3 Revert "[CSSPGO] Pseudo probe encoding and emission."
This reverts commit b035513c06.

Reason: Broke the ASan buildbots:
  http://lab.llvm.org:8011/#/builders/5/builds/2269
2020-12-10 15:53:39 -08:00
Hongtao Yu b035513c06 [CSSPGO] Pseudo probe encoding and emission.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s

Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections.  The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. 

**ELF object emission**

The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.

Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication.  A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.

The format of `.pseudo_probe_desc` section looks like:

```
.section   .pseudo_probe_desc,"",@progbits
.quad   6309742469962978389  // Func GUID
.quad   4294967295           // Func Hash
.byte   9                    // Length of func name
.ascii  "_Z5funcAi"          // Func name
.quad   7102633082150537521
.quad   138828622701
.byte   12
.ascii  "_Z8funcLeafi"
.quad   446061515086924981
.quad   4294967295
.byte   9
.ascii  "_Z5funcBi"
.quad   -2016976694713209516
.quad   72617220756
.byte   7
.ascii  "_Z3fibi"
```

For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :

```
FUNCTION BODY (one for each outlined function present in the text section)
    GUID (uint64)
        GUID of the function
    NPROBES (ULEB128)
        Number of probes originating from this function.
    NUM_INLINED_FUNCTIONS (ULEB128)
        Number of callees inlined into this function, aka number of
        first-level inlinees
    PROBE RECORDS
        A list of NPROBES entries. Each entry contains:
          INDEX (ULEB128)
          TYPE (uint4)
            0 - block probe, 1 - indirect call, 2 - direct call
          ATTRIBUTE (uint3)
            reserved
          ADDRESS_TYPE (uint1)
            0 - code address, 1 - address delta
          CODE_ADDRESS (uint64 or ULEB128)
            code address or address delta, depending on ADDRESS_TYPE
    INLINED FUNCTION RECORDS
        A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
        callees.  Each record contains:
          INLINE SITE
            GUID of the inlinee (uint64)
            ID of the callsite probe (ULEB128)
          FUNCTION BODY
            A FUNCTION BODY entry describing the inlined function.
```

To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.

**Assembling**

Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.

A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.

A example assembly looks like:

```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```

With inlining turned on, the assembly may look different around %bb2 with an inlined probe:

```
# %bb.2:                                # %bb2
.pseudoprobe    837061429793323041 3 0
.pseudoprobe    6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe    837061429793323041 4 0
popq    %rax
retq
```

**Disassembling**

We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.

An example disassembly looks like:

```
00000000002011a0 <foo2>:
  2011a0: 50                    push   rax
  2011a1: 85 ff                 test   edi,edi
  [Probe]:  FUNC: foo2  Index: 1  Type: Block
  2011a3: 74 02                 je     2011a7 <foo2+0x7>
  [Probe]:  FUNC: foo2  Index: 3  Type: Block
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  [Probe]:  FUNC: foo   Index: 1  Type: Block  Inlined: @ foo2:6
  2011a5: 58                    pop    rax
  2011a6: c3                    ret
  [Probe]:  FUNC: foo2  Index: 2  Type: Block
  2011a7: bf 01 00 00 00        mov    edi,0x1
  [Probe]:  FUNC: foo2  Index: 5  Type: IndirectCall
  2011ac: ff d6                 call   rsi
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  2011ae: 58                    pop    rax
  2011af: c3                    ret
```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91878
2020-12-10 09:50:08 -08:00