This converts a default constructor's member initializers into C++11
default member initializers. This patch was automatically generated with
clang-tidy and the modernize-use-default-member-init check.
$ run-clang-tidy.py -header-filter='lldb' -checks='-*,modernize-use-default-member-init' -fix
This is a mass-refactoring patch and this commit will be added to
.git-blame-ignore-revs.
Differential revision: https://reviews.llvm.org/D103483
Add a new state for UnwindPlan::Row which indicates that any
register not listed is not defined, and should not be found in
stack frames newer than this one and passed up the stack. Mostly
intended for use with architectural default unwind plans that are
used for jitted stack frames, where we have no unwind information
or start address. lldb has no way to tell if registers were
spilled in the jitted frame & overwritten, so passing register
values up the stack is not safe to show the user.
Architectural default unwind plans are also used as a fast unwind
plan on x86_64 in particular, and are used as the fallback unwind
plans when lldb thinks it may be able to work around a problem
which causes the unwinder to stop walking the stack early.
For fast unwind plans, when we don't find a register location in
the arch default unwind plan, we fall back to computing & using
the full unwind plan. One small part of this patch is to know that
a register marked as Undefined in the fast unwind plan is a special
case, and we should continue on to the full unwind plan to find what
the real unwind rule is for this register.
Differential Revision: https://reviews.llvm.org/D96829
<rdar://problem/70398009>
Update the "image show-unwind" command output to show if the function
being shown is listed as a user-setting or platform trap handler.
Update the individual UnwindPlan dumps to show whether the unwind plan
is registered as a trap handler.
The llvm DWARFExpression dump is nearly identical, but better -- for
example it does print a spurious space after zero-argument expressions.
Some parts of our code (variable locations) have been already switched
to llvm-based expression dumping. This switches the remainder: unwind
plans and some unit tests.
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary:
Windows unwinding is weird. The unwind rules do not (always) describe
the precise layout of the stack, but rather expect the debugger to scan
the stack for something which looks like a plausible return address, and
the unwind based on that. The reason this works somewhat reliably is
because the the unwinder also has access to the frame sizes of the
functions on the stack. This allows it (in most cases) to skip function
pointers in local variables or function arguments, which could otherwise
be mistaken for return addresses.
Implementing this kind of unwind mechanism in lldb was a bit challenging
because we expect to be able to statically describe (in the UnwindPlan)
structure, the layout of the stack for any given instruction. Giving a
precise desription of this is not possible, because it requires
correlating information from two functions -- the pushed arguments to a
function are considered a part of the callers stack frame, and their
size needs to be considered when unwinding the caller, but they are only
present in the unwind entry of the callee. The callee may end up being
in a completely different module, or it may not even be possible to
determine it statically (indirect calls).
This patch implements this functionality by introducing a couple of new
APIs:
SymbolFile::GetParameterStackSize - return the amount of stack space
taken up by parameters of this function.
SymbolFile::GetOwnFrameSize - the size of this function's frame. This
excludes the parameters, but includes stuff like local variables and
spilled registers.
These functions are then used by the unwinder to compute the estimated
location of the return address. This address is not always exact,
because the stack may contain some additional values -- for instance, if
we're getting ready to call a function then the stack will also contain
partially set up arguments, but we will not know their size because we
haven't called the function yet. For this reason the unwinder will crawl
up the stack from the return address position, and look for something
that looks like a possible return address. Currently, we assume that
something is a valid return address if it ends up pointing to an
executable section.
All of this logic kicks in when the UnwindPlan sets the value of CFA as
"isHeuristicallyDetected", which is also the final new API here. Right
now, only SymbolFileBreakpad implements these APIs, but in the future
SymbolFilePDB will use them too.
Differential Revision: https://reviews.llvm.org/D66638
llvm-svn: 373072
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
Summary:
Previously we were printing the dwarf expressions in unwind rules simply
as "dwarf-expr". This patch uses the existing dwarf-printing
capabilities in lldb to enhance this dump output, and print the full
decoded dwarf expression.
Reviewers: jasonmolenda, clayborg
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D60949
llvm-svn: 358959
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This patch fixes issues with a stack realignment.
MSVC maintains two frame pointers (`ebx` and `ebp`) for a realigned stack - one
is used for access to function parameters, while another is used for access to
locals. To support this the patch:
- adds an alternative frame pointer (`ebx`);
- considers stack realignment instructions (e.g. `and esp, -32`);
- along with CFA (Canonical Frame Address) which point to the position next to
the saved return address (or to the first parameter on the stack) introduces
AFA (Aligned Frame Address) which points to the position of the stack pointer
right after realignment. AFA is used for access to registers saved after the
realignment (see the test);
Here is an example of the code with the realignment:
```
struct __declspec(align(256)) OverAligned {
char c;
};
void foo(int foo_arg) {
OverAligned oa_foo = { 1 };
auto aaa_foo = 1234;
}
void bar(int bar_arg) {
OverAligned oa_bar = { 2 };
auto aaa_bar = 5678;
foo(1111);
}
int main() {
bar(2222);
return 0;
}
```
and here is the `bar` disassembly:
```
push ebx
mov ebx, esp
sub esp, 8
and esp, -100h
add esp, 4
push ebp
mov ebp, [ebx+4]
mov [esp+4], ebp
mov ebp, esp
sub esp, 200h
mov byte ptr [ebp-200h], 2
mov dword ptr [ebp-4], 5678
push 1111 ; foo_arg
call j_?foo@@YAXH@Z ; foo(int)
add esp, 4
mov esp, ebp
pop ebp
mov esp, ebx
pop ebx
retn
```
Reviewers: labath, zturner, jasonmolenda, stella.stamenova
Reviewed By: jasonmolenda
Subscribers: abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53435
llvm-svn: 345577
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
The IT instruction can specify condition code for up to 4 consecutive
instruction and it is used quite often by clang in epilogues causing
an issue when trying to unwind from locations covered by the IT
instruction and for locatins inmediately after the IT instruction.
Changes made to fix it:
* Introduce the concept of conditional instruction block what is a list
of consecutive instructions with the same condition. We update the
unwind information during the conditional instruction block and when
we reach the end of it (first instruction with a differemt condition)
then we restore the unwind information we had before the condition.
* Fix a bug in the ARM instruction emulator where neither PC nor the
ITSTATE was advanced when we reached an instruction what we can't
decode.
After the change we have no regression on android-arm running the
regular test suit and TestStandardUnwind also passes when running it
with clang as the compiler (previously it failed on an IT instruction).
Differential revision: http://reviews.llvm.org/D16814
llvm-svn: 260368
* Add and fix the emulation of several instruction.
* Disable frame pointer usage on Android.
* Specify return address register for the unwind plan instead of explict
tracking the value of RA.
* Replace prologue detection heuristics (unreliable in several cases)
with a logic to follow the branch instructions and restore the CFI
value based on them. The target address for a branch should have the
same CFI as the source address (if they are in the same function).
* Handle symbols in ELF files where the symbol size is not specified
with calcualting their size based on the next symbol (already done
in MachO files).
* Fix architecture in FuncUnwinders with filling up the inforamtion
missing from the object file with the architecture of the target.
* Add code to read register wehn the value is set to "IsSame" as it
meanse the value of a register in the parent frame is the same as the
value in the current frame.
Differential revision: http://reviews.llvm.org/D10447
llvm-svn: 240533
Summary:
This patch enables evaluation of DWARF expressions setting the CFA during stack unwinding.
This makes TestSigtrampUnwind "almost" pass on linux. I am not enabling the test yet since the
symbol name for the signal trampoline does not get resolved properly due to a different bug, but
apart from that, the backtrace is sane.
I am unsure how this change affects Mac. I think it makes the unwinder prefer the DWARF unwind
plan instead of some custom platform-dependant plan. However, it does not affect the end result
- the stack unwinding works as expected.
Reviewers: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7792
llvm-svn: 230211
Summary:
This change refactors UnwindPlan::Row to be able to store the fact that the CFA is value is set
by evaluating a dwarf expression (DW_CFA_def_cfa_expression). This is achieved by creating a new
class CFAValue and moving all CFA setting/getting code there. Note that code using the new
CFAValue::isDWARFExpression is not yet present and will be added in a follow-up patch. Therefore,
this patch should not change the functionality in any way.
Test Plan: Ran tests on Mac and Linux. No regressions detected.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7755
llvm-svn: 230210
step through the complete function looking for any epilogue
instructions. If we find an epilogue sequence, re-instate
the correct unwind instructions if there is more code past
that epilogue -- this will correctly handle an x86 function
with multiple epilogues in it.
NB there is still a bug with the "eh_frame augmented"
UnwindPlans and mid-function epilogues. Looking at that next.
<rdar://problem/18863406>
llvm-svn: 225770
eh_frame data. These two pieces of information are used in the
process of exception handler unwinding on SysV ABI systems.
This patch reads the data from the eh_frame section
(DWARFCallFrameInfo.cpp), allows for it to be saved & read out
of a given UnwindPlan (UnwindPlan.h, UnwindPlan.cpp) - as well
as printing the information in the UnwindPlan::Dump method - and
adds methods to the FuncUnwinders object so that higher levels
can query if a given function has an LSDA / personality routine
defined.
It's only lightly tested, but seems to be working correctly as long
as your have this information in eh_frame. Does not address getting
this information from compact unwind yet on Darwin systems.
<rdar://problem/18742797>
llvm-svn: 222214
Summary:
PowerPC handles the stack chain with the current stack pointer being a pointer
to the backchain (CFA). LLDB currently has no way of handling this, so this
adds a "CFA is dereferenced from a register" type.
Discussed with Jason Molenda, who also provided the initial patch for this.
Reviewers: jasonmolenda
Reviewed By: jasonmolenda
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D6182
llvm-svn: 221788
We decided to use assmbly profiler instead of eh_frame for frame 0 because for compiler generated code, eh_frame is usually synchronous(a.k.a. only valid at call site); and we have no way to tell if it's asynchronous or not.
But for x86 & x86_64 compiler generated code:
1. clang & GCC describes all prologue instructions in eh_frame;
2. mid-function stack pointer altering instructions can be easily detected.
So we can grab eh_frame, and use assembly profiler to augment it into asynchronous unwind table.
This change also benefits hand-written assembly; eh_frame for hand-written assembly is often asynchronous,so we have a much better chance to successfully unwind through them.
Change by Tong Shen.
llvm-svn: 216406
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
indications that the UnwindPlan is invalid -- for instance, a
complete lack of rows, or a row that fails to define a register to
base the CFA off of.
<rdar://problem/15246247>
llvm-svn: 196201
Full UnwindPlan is trying to do an impossible unwind; in that case
invalidate the Full UnwindPlan and replace it with the architecture
default unwind plan.
This is a scenario that happens occasionally with arm unwinds in
particular; the instruction analysis based full unwindplan can
mis-parse the functions and the stack walk stops prematurely. Now
we can do a simpleminded frame-chain walk to find the caller frame
and continue the unwind. It's not ideal but given the complicated
nature of analyzing the arm functions, and the lack of eh_frame
information on iOS, it is a distinct improvement and fixes some
long-standing problems with the unwinder on that platform.
This is fixing <rdar://problem/12091421>. I may re-use this
invalidate feature in the future if I can identify other cases where
the full unwindplan's unwind information is clearly incorrect.
This checkin also includes some cleanup for the volatile register
definition in the arm ABI plugin for <rdar://problem/10652166>
although work remains to be done for that bug.
llvm-svn: 166757
the state of the unwind instructions once the prologue has finished. If it hits an
early return epilogue in the middle of the function, re-instate the prologue after that
epilogue has completed so that we can still unwind for cases where the flow of control
goes past that early-return. <rdar://problem/11775059>
Move the UnwindPlan operator== definition into the .cpp file, expand the definition a bit.
Add some casts to a SBCommandInterpreter::HandleCompletion() log statement so it builds without
warning on 64- and 32-bit systems.
llvm-svn: 160337
a shared pointer to ease some memory management issues with a patch
I'm working on.
The main complication with using SPs for these objects is that most
methods that build up an UnwindPlan will construct a Row to a given
instruction point in a function, then add additional regsaves in
the next instruction point to that row and push it again. A little
care is needed to not mutate the previous instruction point's Row
once these are switched to being held behing shared pointers.
llvm-svn: 160214
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
Switch the EmulateInstruction to use the standard RegisterInfo structure
that is defined in the lldb private types intead of passing the reg kind and
reg num everywhere. EmulateInstruction subclasses also need to provide
RegisterInfo structs given a reg kind and reg num. This eliminates the need
for the GetRegisterName() virtual function and allows more complete information
to be passed around in the read/write register callbacks. Subclasses should
always provide RegiterInfo structs with the generic register info filled in as
well as at least one kind of register number in the RegisterInfo.kinds[] array.
llvm-svn: 130256
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.
Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete
frame itself.
So now the stack frames and the register contexts should behave much better.
llvm-svn: 122976
RegisterContextLLDB holds a reference to the SymbolContext
in the vector of Cursors that UnwindLLDB maintains. Switch
UnwindLLDB to hold a vector of shared pointers of Cursors
so this reference doesn't become invalid.
Correctly falling back from the "fast" UnwindPlan to the
"full" UnwindPlan when additional registers need to be
retrieved.
llvm-svn: 118218
Not yet enabled as the default unwinder but there are no known
backtrace problems with the code at this point.
Added 'log enable lldb unwind' to help diagnose backtrace problems;
this output needs a little refining but it's a good first step.
eh_frame information is currently read unconditionally - the code
is structured to allow this to be delayed until it's actually needed.
There is a performance hit when you have to parse the eh_frame
information for any largeish executable/library so it's necessary
to avoid if possible.
It's confusing having both the UnwindPlan::RegisterLocation struct
and the RegisterConextLLDB::RegisterLocation struct, I need to rename
one of them.
The writing of registers isn't done in the RegisterConextLLDB subclass
yet; neither is the running of complex DWARF expressions from eh_frame
(e.g. used for _sigtramp on Mac OS X).
llvm-svn: 117256
The Unwind and RegisterContext subclasses still need
to be finished; none of this code is used by lldb at
this point (unless you call into it by hand).
The ObjectFile class now has an UnwindTable object.
The UnwindTable object has a series of FuncUnwinders
objects (Function Unwinders) -- one for each function
in that ObjectFile we've backtraced through during this
debug session.
The FuncUnwinders object has a few different UnwindPlans.
UnwindPlans are a generic way of describing how to find
the canonical address of a given function's stack frame
(the CFA idea from DWARF/eh_frame) and how to restore the
caller frame's register values, if they have been saved
by this function.
UnwindPlans are created from different sources. One source is the
eh_frame exception handling information generated by the compiler
for unwinding an exception throw. Another source is an assembly
language inspection class (UnwindAssemblyProfiler, uses the Plugin
architecture) which looks at the instructions in the funciton
prologue and describes the stack movements/register saves that are
done.
Two additional types of UnwindPlans that are worth noting are
the "fast" stack UnwindPlan which is useful for making a first
pass over a thread's stack, determining how many stack frames there
are and retrieving the pc and CFA values for each frame (enough
to create StackFrameIDs). Only a minimal set of registers is
recovered during a fast stack walk.
The final UnwindPlan is an architectural default unwind plan.
These are provided by the ArchDefaultUnwindPlan class (which uses
the plugin architecture). When no symbol/function address range can
be found for a given pc value -- when we have no eh_frame information
and when we don't have a start address so we can't examine the assembly
language instrucitons -- we have to make a best guess about how to
unwind. That's when we use the architectural default UnwindPlan.
On x86_64, this would be to assume that rbp is used as a stack pointer
and we can use that to find the caller's frame pointer and pc value.
It's a last-ditch best guess about how to unwind out of a frame.
There are heuristics about when to use one UnwindPlan versues the other --
this will all happen in the still-begin-written UnwindLLDB subclass of
Unwind which runs the UnwindPlans.
llvm-svn: 113581