Commit Graph

3 Commits

Author SHA1 Message Date
Craig Topper e745f7c563 [LegalizeTypes] Improve ExpandIntRes_XMULO codegen.
The code previously used two BUILD_PAIRs to concatenate the two UMULO
results with 0s in the lower bits to match original VT. Then it created
an ADD and a UADDO with the original bit width. Each of those operations
need to be expanded since they have illegal types.

Since we put 0s in the lower bits before the ADD, the lower half of the
ADD result will be 0. So the lower half of the UADDO result is
solely determined by the other operand. Since the UADDO need to
be split in half, we don't really needd an operation for the lower
bits. Unfortunately, we don't see that in type legalization and end up
creating something more complicated and DAG combine or
lowering aren't always able to recover it.

This patch directly generates the narrower ADD and UADDO to avoid
needing to legalize them. Now only the MUL is done on the original
type.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D97440
2021-03-01 09:54:32 -08:00
Scott Linder 7f3afd480d Emit register names in cfi assembly directives
Update .cfi_undefined, .cfi_register, and .cfi_return_column to
print symbolic register arguments.

Differential Revision: https://reviews.llvm.org/D74914
2020-02-25 14:00:01 -05:00
Eli Friedman 73e8a784e6 [SelectionDAG] Improve the legalisation lowering of UMULO.
There is no way in the universe, that doing a full-width division in
software will be faster than doing overflowing multiplication in
software in the first place, especially given that this same full-width
multiplication needs to be done anyway.

This patch replaces the previous implementation with a direct lowering
into an overflowing multiplication algorithm based on half-width
operations.

Correctness of the algorithm was verified by exhaustively checking the
output of this algorithm for overflowing multiplication of 16 bit
integers against an obviously correct widening multiplication. Baring
any oversights introduced by porting the algorithm to DAG, confidence in
correctness of this algorithm is extremely high.

Following table shows the change in both t = runtime and s = space. The
change is expressed as a multiplier of original, so anything under 1 is
“better” and anything above 1 is worse.

+-------+-----------+-----------+-------------+-------------+
| Arch  | u64*u64 t | u64*u64 s | u128*u128 t | u128*u128 s |
+-------+-----------+-----------+-------------+-------------+
|   X64 |     -     |     -     |    ~0.5     |    ~0.64    |
|  i686 |   ~0.5    |   ~0.6666 |    ~0.05    |    ~0.9     |
| armv7 |     -     |   ~0.75   |      -      |    ~1.4     |
+-------+-----------+-----------+-------------+-------------+

Performance numbers have been collected by running overflowing
multiplication in a loop under `perf` on two x86_64 (one Intel Haswell,
other AMD Ryzen) based machines. Size numbers have been collected by
looking at the size of function containing an overflowing multiply in
a loop.

All in all, it can be seen that both performance and size has improved
except in the case of armv7 where code size has regressed for 128-bit
multiply. u128*u128 overflowing multiply on 32-bit platforms seem to
benefit from this change a lot, taking only 5% of the time compared to
original algorithm to calculate the same thing.

The final benefit of this change is that LLVM is now capable of lowering
the overflowing unsigned multiply for integers of any bit-width as long
as the target is capable of lowering regular multiplication for the same
bit-width. Previously, 128-bit overflowing multiply was the widest
possible.

Patch by Simonas Kazlauskas!

Differential Revision: https://reviews.llvm.org/D50310

llvm-svn: 339922
2018-08-16 18:39:39 +00:00