This change implements new DAG notes GLOBAL_GET/GLOBAL_SET, and
lowering methods for load and stores of reference types from IR
globals. Once the lowering creates the new nodes, tablegen pattern
matches those and converts them to Wasm global.get/set.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D95425
Summary: Add support for dumping line number
information for XCOFF object files in llvm-objdump.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D101272
This is relanding commit d1d36f7ad2 .
This patch additionally addresses failures found in buildbots due to unstable build ordering & post review comments.
This patch introduces a new tool, llvm-tapi-diff, that compares and returns the diff of two TBD files.
Reviewed By: ributzka, JDevlieghere
Differential Revision: https://reviews.llvm.org/D101835
We will need to set the ssp canary bit in traceback table to communicate
with unwinder about the canary.
Reviewed By: #powerpc, shchenz
Differential Revision: https://reviews.llvm.org/D103202
This is relanding commit d1d36f7ad2 .
This patch additionally addresses failures found in buildbots & post review comments.
This patch introduces a new tool, llvm-tapi-diff, that compares and returns the diff of two TBD files.
Reviewed By: ributzka, JDevlieghere
Differential Revision: https://reviews.llvm.org/D101835
This patch changes RVV's policy for its supported list of fixed-length
vector types by capping by vector size rather than element count. Now
all 1024-byte vectors (of supported element types) are supported, rather
than all 256-element vectors.
This is a more natural fit for the architecture, and allows us to, for
example, improve the support for vector bitcasts.
This change necessitated the adding of some new simple types to avoid
"regressing" on the number of currently-supported vectors. We round out
the 1024-byte types by adding `v512i8`, `v1024i8`, `v512i16` and
`v512f16`.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D103884
This patch adds initial support for using the new pass manager when
doing ThinLTO via libLTO.
Reviewed By: steven_wu
Differential Revision: https://reviews.llvm.org/D102627
Command to see the differences:
diff -u <(sed -n 's#^HANDLE_DI_FLAG *([^,]*, *\([^()]*\)) *\(//.*\)\?$#\1#p' <llvm/include/llvm/IR/DebugInfoFlags.def | grep -vw Largest) <(sed -n 's#^ *LLVMDIFlag\([^ ]*\) *= (\?[0-9].*$#\1#p' <llvm/include/llvm-c/DebugInfo.h)
OCaml binding is more seriously out of sync but I have not tried to sync it.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D103910
With Twine now ubiquitous after rG92a79dbe91413f685ab19295fc7a6297dbd6c824,
it needs support for string_view when building clang with newer C++ standards.
This is similar to how StringRef is handled.
Differential Revision: https://reviews.llvm.org/D103935
This patch https://reviews.llvm.org/D102876 caused some lit regressions on z/OS because tmp files were no longer being opened based on binary/text mode. This patch passes OpenFlags when creating tmp files so we can open files in different modes.
Reviewed By: amccarth
Differential Revision: https://reviews.llvm.org/D103806
This reverts commit e772216e70
(and fixup 7f6c878a2c).
The build is broken with gcc5 host compiler:
In file included from
from mlir/lib/Dialect/Utils/StructuredOpsUtils.cpp:9:
tools/mlir/include/mlir/IR/BuiltinAttributes.h.inc:424:57: error: type/value mismatch at argument 1 in template parameter list for 'template<class ItTy, class FuncTy, class FuncReturnTy> class llvm::mapped_iterator'
std::function<T(ptrdiff_t)>>;
^
tools/mlir/include/mlir/IR/BuiltinAttributes.h.inc:424:57: note: expected a type, got 'decltype (seq<ptrdiff_t>(0, 0))::const_iterator'
error: definition of implicit copy constructor for 'LoopNest' is
deprecated because it has a user-declared copy assignment operator
[-Werror,-Wdeprecated-copy]
LoopNest &operator=(const LoopNest &) = delete;
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D103752
This patch simplifies the implementation of Sequence and makes it compatible with llvm::reverse.
It exposes the reverse iterators through rbegin/rend which prevents a dangling reference in std::reverse_iterator::operator++().
Differential Revision: https://reviews.llvm.org/D102679
> This reapplies c0f3dfb9, which was reverted following the discovery of
> crashes on linux kernel and chromium builds - these issues have since
> been fixed, allowing this patch to re-land.
This reverts commit 36ec97f76a.
The change caused non-determinism in the compiler, see comments on the code
review at https://reviews.llvm.org/D91722.
Reverting to unbreak people's builds until that can be addressed.
This also reverts the follow-up "[DebugInfo] Limit the number of values
that may be referenced by a dbg.value" in
a0bd6105d8.
`VPIntrinsic::getDeclarationForParams` creates a vp intrinsic
declaration for parameters you want to call it with. This is in
preparation of a new builder class that makes emitting vp intrinsic code
nearly as convenient as using a plain ir builder (aka `VectorBuilder`,
to be used by D99750).
Reviewed By: frasercrmck, craig.topper, vkmr
Differential Revision: https://reviews.llvm.org/D102686
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Also, a crash problem on legacy pass manager is fixed.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
In the situation where we need to replace a constant operand C from a constant expression CE
by an instruction NI, it not possible without converting CE itself into an instruction. This
utility helps to convert the given set of constant expression operands from an instruction I
into a corresponding set of instructions.
The current use-case for this utility is from the patches - https://reviews.llvm.org/D103225
and https://reviews.llvm.org/D103655.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D103661
getRelocatedSection interface should not check that the object file is
relocatable, as executable files may have relocations preserved with
`--emit-relocs` linker flag. The relocations are useful in context of post-link
binary analysis for function reference identification. For example, BOLT relies
on relocations to perform function reordering.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D102296
So far, support for x86_64-linux-gnux32 has been handled by explicit
comparisons of Triple.getEnvironment() to GNUX32. This worked as long as
x86_64-linux-gnux32 was the only X32 environment to worry about, but we
now have x86_64-linux-muslx32 as well. To support this, this change adds
an isX32() function and uses it. It replaces all checks for GNUX32 or
MuslX32 by isX32(), except for the following:
- Triple::isGNUEnvironment() and Triple::isMusl() are supposed to treat
GNUX32 and MuslX32 differently.
- computeTargetTriple() needs to be able to transform triples to add or
remove X32 from the environment and needs to map GNU to GNUX32, and
Musl to MuslX32.
- getMultiarchTriple() completely lacks any Musl support and retains the
explicit check for GNUX32 as it can only return x86_64-linux-gnux32.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D103777
The motivation here is simple loops with unsigned induction variables w/non-one steps. A toy example would be:
for (unsigned i = 0; i < N; i += 2) { body; }
Given C/C++ semantics, we do not get the nuw flag on the induction variable. Given that lack, we currently can't compute a bound for this loop. We can do better for many cases, depending on the contents of "body".
The basic intuition behind this patch is as follows:
* A step which evenly divides the iteration space must wrap through the same numbers repeatedly. And thus, we can ignore potential cornercases where we exit after the n-th wrap through uint32_max.
* Per C++ rules, infinite loops without side effects are UB. We already have code in SCEV which relies on this. In LLVM, this is tied to the mustprogress attribute.
Together, these let us conclude that the trip count of this loop must come before unsigned overflow unless the body would form a well defined infinite loop.
A couple notes for those reading along:
* I reused the loop properties code which is overly conservative for this case. I may follow up in another patch to generalize it for the actual UB rules.
* We could cache the n(s/u)w facts. I left that out because doing a pre-patch which cached existing inference showed a lot of diffs I had trouble fully explaining. I plan to get back to this, but I don't want it on the critical path.
Differential Revision: https://reviews.llvm.org/D103118
Add in the ability of parsing symbol table for 64 bit object.
Reviewed By: jhenderson, DiggerLin
Differential Revision: https://reviews.llvm.org/D85774
This fixes an issue in BasicTTIImpl.h where it tries to do a
cast<FixedVectorType> on a scalable vector type in order to get the
scalarization cost. Because scalarization of scalable vectors is not
supported, we return Invalid instead.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D103798
Use llvm.experimental.vector.insert instead of storing into an alloca
when generating code for these intrinsics. This defers the codegen of
the generated vector to instruction selection, allowing existing
shufflevector style optimizations to apply.
Additionally, introduce a new target transform that can recognise fixed
predicate patterns in the svbool variants of these intrinsics.
Differential Revision: https://reviews.llvm.org/D103082
This pass transforms loops that contain a conditional branch with induction
variable. For example, it transforms left code to right code:
newbound = min(n, c)
while (iv < n) { while(iv < newbound) {
A A
if (iv < c) B
B C
C }
} if (iv != n) {
while (iv < n) {
A
C
}
}
Differential Revision: https://reviews.llvm.org/D102234
Summary: The patch implements the mapping of the Yaml
information to XCOFF object file to enable the yaml2obj
tool for XCOFF. Currently only 32-bit is supported.
Reviewed By: jhenderson, shchenz
Differential Revision: https://reviews.llvm.org/D95505
Don't require a specific kind of IRBuilder for TargetLowering hooks.
This allows us to drop the IRBuilder.h include from TargetLowering.h.
Differential Revision: https://reviews.llvm.org/D103759
We might want to use it when creating SCEV proper in createSCEV(),
now that we don't `forgetValue()` in `SimplifyIndvar::strengthenOverflowingOperation()`,
which might have caused us to loose some optimization potential.
Loop peeling is currently performed as part of UnrollLoop().
Outside test scenarios, it is always performed with an unroll
count of 1. This means that unrolling doesn't actually do anything
apart from performing post-unroll simplification.
When testing, it's currently possible to specify both an explicit
peel count and an explicit unroll count. This doesn't perform any
sensible operation and may result in miscompiles, see
https://bugs.llvm.org/show_bug.cgi?id=45939.
This patch moves peeling from UnrollLoop() into tryToUnrollLoop(),
so that peeling does not also perform a susequent unroll. We only
run the post-unroll simplifications. Specifying both an explicit
peel count and unroll count is forbidden.
In the future, we may want to support both (non-PGO) peeling a
loop and unrolling it, but this needs to be done by first performing
the peel and then recalculating unrolling heuristics on a now
possibly analyzable loop.
Differential Revision: https://reviews.llvm.org/D103362
This patch was split from https://reviews.llvm.org/D102246
[SampleFDO] New hierarchical discriminator for Flow Sensitive SampleFDO
This is for llvm-profdata part of change. It sets the bit masks for the
profile reader in llvm-profdata. Also add an internal option
"-fs-discriminator-pass" for show and merge command to process the profile
offline.
This patch also moved setDiscriminatorMaskedBitFrom() to
SampleProfileReader::create() to simplify the interface.
Differential Revision: https://reviews.llvm.org/D103550
This patch changes the `isKnownHeapToStack` and `isAssumedHeapToStack`
member functions to return if a function call is going to be altered by
HeapToStack.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D103574
This patch adds an option to `lookupAAFor` that allows it to return a
nullptr if the state of the looked up attribute is invalid. This is so
future passes can use this to query other attributes with the guarantee
that they are valid.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D103556
Need to emit a call for __kmpc_cancel_barrier in the exit block for
__kmpc_cancel function call if cancellation of the parallel block is
requested.
Differential Revision: https://reviews.llvm.org/D103646
Building LLVM with the LLVM_ENABLE_MODULES cmake option fails when the modules are being compiled due to missing includes. This is a side effect of some transitive includes that changed recently.
Differential Revision: https://reviews.llvm.org/D103645
This builds on D103584. The change eliminates the coupling between unroll heuristic and implementation w.r.t. knowing when the passed in trip count is an exact trip count or a max trip count. In theory the new code is slightly less powerful (since it relies on exact computable trip counts), but in practice, it appears to cover all the same cases. It can also be extended if needed.
The test change shows what appears to be a bug in the existing code around the interaction of peeling and unrolling. The original loop only ran 8 iterations. The previous output had the loop peeled by 2, and then an exact unroll of 8. This meant the loop ran a total of 10 iterations which appears to have been a miscompile.
Differential Revision: https://reviews.llvm.org/D103620
This patch introduces a new tool, llvm-tapi-diff, that compares and returns the diff of two TBD files.
Reviewed By: ributzka, JDevlieghere
Differential Revision: https://reviews.llvm.org/D101835
If we're not emitting separate fences for the success/failure cases, we
need to pass the merged ordering to the target so it can emit the
correct instructions.
For the PowerPC testcase, we end up with extra fences, but that seems
like an improvement over missing fences. If someone wants to improve
that, the PowerPC backed could be taught to emit the fences after isel,
instead of depending on fences emitted by AtomicExpand.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33332 .
Differential Revision: https://reviews.llvm.org/D103342
Restructure handling of cfg-hide-unreachable-paths and
cfg-hide-deoptimize-paths options so as to make it easier
to introduce new types of hidden blocks.
This is a first step towards simplifying the transform interface to be less error prone. The basic idea is that querying SCEV is cheap (since it's cached) and we can just check for properties related to branch folding in the transform method instead of relying on the heuristic part to pass everything in correctly.
Differential Revision: https://reviews.llvm.org/D103584
This is a followup to D103422. The DenseMapInfo implementations for
ArrayRef and StringRef are moved into the ArrayRef.h and StringRef.h
headers, which means that these two headers no longer need to be
included by DenseMapInfo.h.
This required adding a few additional includes, as many files were
relying on various things pulled in by ArrayRef.h.
Differential Revision: https://reviews.llvm.org/D103491
`TargetFrameLowering::emitCalleeSavedFrameMoves` with 4 arguments is not
used anywhere in CodeGen. Thus it shouldn't be exposed as a virtual
function. NFC.
Differential Revision: https://reviews.llvm.org/D103328
The buildbot ppc64le-lld-multistage-test has been failing because the variable
Tag in Waymaking.h is set but not used. This patch removes that varaible.
This patch was split from https://reviews.llvm.org/D102246
[SampleFDO] New hierarchical discriminator for Flow Sensitive SampleFDO
This is mainly for ProfileData part of change. It will load
FS Profile when such profile is detected. For an extbinary format profile,
create_llvm_prof tool will add a flag to profile summary section.
For other format profiles, the users need to use an internal option
(-profile-isfs) to tell the compiler that the profile uses FS discriminators.
This patch also simplified the bit API used by FS discriminators.
Differential Revision: https://reviews.llvm.org/D103041
Add getDemandedBits method for uses so we can query demanded bits for each use. This can help getting better use information. For example, for the code below
define i32 @test_use(i32 %a) {
%1 = and i32 %a, -256
%2 = or i32 %1, 1
%3 = trunc i32 %2 to i8 (didn't optimize this to 1 for illustration purpose)
... some use of %3
ret %2
}
if we look at the demanded bit of %2 (which is all 32 bits because of the return), we would conclude that %a is used regardless of how its return is used. However, if we look at each use separately, we will see that the demanded bit of %2 in trunc only uses the lower 8 bits of %a which is redefined, therefore %a's usage depends on how the function return is used.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97074
This patch uses the calculated maximum scalable VFs to build VPlans,
cost them and select a suitable scalable VF.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98722
A recent patch:
https://reviews.llvm.org/rGe0921655b1ff8d4ba7c14be59252fe05b705920e
changed clangs AIX bitfield handling to use 4-byte bitfield containers,
matching XLs behavior. This change triggers static assert failures when
bootstrapping. Change the macro we check to enable bitfield packing on
AIX to `__clang__` which is defined by both xlclang and clang.
Differential Revision: https://reviews.llvm.org/D103474
Use RuntimeLibcalls to get a common way to pick correct RTLIB::POWI_*
libcall for a given value type.
This includes a small refactoring of ExpandFPLibCall and
ExpandArgFPLibCall in SelectionDAGLegalize to share a bit of code,
plus adding an ExpandFPLibCall version that can be called directly
when expanding FPOWI/STRICT_FPOWI to ensure that we actually use
the same RTLIB::Libcall when expanding the libcall as we used when
checking the legality of such a call by doing a getLibcallName check.
Differential Revision: https://reviews.llvm.org/D103050
When rewriting
powf(2.0, itofp(x)) -> ldexpf(1.0, x)
exp2(sitofp(x)) -> ldexp(1.0, sext(x))
exp2(uitofp(x)) -> ldexp(1.0, zext(x))
the wrong type was used for the second argument in the ldexp/ldexpf
libc call, for target architectures with 16 bit "int" type.
The transform incorrectly used a bitcasted function pointer with
a 32-bit argument when emitting the ldexp/ldexpf call for such
targets.
The fault is solved by using the correct function prototype
in the call, by asking TargetLibraryInfo about the size of "int".
TargetLibraryInfo by default derives the size of the int type by
assuming that it is 16 bits for 16-bit architectures, and
32 bits otherwise. If this isn't true for a target it should be
possible to override that default in the TargetLibraryInfo
initializer.
Differential Revision: https://reviews.llvm.org/D99438
Some existing places use getPointerElementType() to create a copy of a
pointer type with some new address space.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D103429
It's still in use in a few places so we can't delete it yet but there's not
many at this point.
Differential Revision: https://reviews.llvm.org/D103352
WindowsSupport.h is a public header, however if it gets included, will cause a compile error indicating that llvm/Config/config.h cannot be found, because config.h is a private header. However there is no actual dependency on the private things in this header, so it can be changed to the public config header.
Reviewed By: amccarth
Differential Revision: https://reviews.llvm.org/D103370
This patch transforms the sequence
lea (reg1, reg2), reg3
sub reg3, reg4
to two sub instructions
sub reg1, reg4
sub reg2, reg4
Similar optimization can also be applied to LEA/ADD sequence.
The modifications to TwoAddressInstructionPass is to ensure the operands of ADD
instruction has expected order (the dest register of LEA should be src register of ADD).
Differential Revision: https://reviews.llvm.org/D101970
When we're remapping an AddRec, the AddRec constructed by a partial
rewrite might not make sense. This triggers an assertion complaining
it's not loop-invariant.
Instead of constructing the partially rewritten AddRec, just skip
straight to calling evaluateAtIteration.
Testcase was automatically reduced using llvm-reduce, so it's a little
messy, but hopefully makes sense.
Differential Revision: https://reviews.llvm.org/D102959
As suggested in https://bugs.llvm.org/show_bug.cgi?id=50527, this
moves the DenseMapInfo for APInt and APSInt into the respective
headers, removing the need to include APInt.h and APSInt.h from
DenseMapInfo.h.
We could probably do the same from StringRef and ArrayRef as well.
Differential Revision: https://reviews.llvm.org/D103422
InstCombine didn't perform the transformations when fmul's operands were
the same instruction because it required to have one use for each of them
which is false in the case. This patch fixes this + adds tests for them
and introduces a new function isOnlyUserOfAnyOperand to check these cases
in a single place.
This patch is a result of discussion in D102574.
Differential Revision: https://reviews.llvm.org/D102698
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
Update isFirstOrderRecurrence to explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.
Fixes PR44286 (and another PR or two).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D84951
This is based on the assumption that most simulated instructions don't define
more than one or two registers. This is true for example on x86, where
most instruction definitions don't declare more than one register write.
The default code region size has been increased from 8 to 16. This is based on
the assumption that, for small microbenchmarks, the typical code snippet size is
often less than 16 instructions.
mca::Instruction now uses bitfields to pack flags.
No functional change intended.
1. Removed redundant includes,
2. Removed never defined and used `releaseMemory()`.
3. Fixed member functions names first letter case.
4. Renamed duplicate (in nested struct `NonLocalPointerInfo`) name
`NonLocalDeps` to `NonLocalDepsMap`.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D102358
ExprValueMap is a map from SCEV * to a set-vector of (Value *, ConstantInt *) pair,
and while the map itself will likely be big-ish (have many keys),
it is a reasonable assumption that each key will refer to a small-ish
number of pairs.
In particular looking at n=512 case from
https://bugs.llvm.org/show_bug.cgi?id=50384,
the small-size of 4 appears to be the sweet spot,
it results in the least allocations while minimizing memory footprint.
```
$ for i in $(ls heaptrack.opt.*.gz); do echo $i; heaptrack_print $i | tail -n 6; echo ""; done
heaptrack.opt.0-orig.gz
total runtime: 14.32s.
calls to allocation functions: 8222442 (574192/s)
temporary memory allocations: 2419000 (168924/s)
peak heap memory consumption: 190.98MB
peak RSS (including heaptrack overhead): 239.65MB
total memory leaked: 67.58KB
heaptrack.opt.1-n1.gz
total runtime: 13.72s.
calls to allocation functions: 7184188 (523705/s)
temporary memory allocations: 2419017 (176338/s)
peak heap memory consumption: 191.38MB
peak RSS (including heaptrack overhead): 239.64MB
total memory leaked: 67.58KB
heaptrack.opt.2-n2.gz
total runtime: 12.24s.
calls to allocation functions: 6146827 (502355/s)
temporary memory allocations: 2418997 (197695/s)
peak heap memory consumption: 163.31MB
peak RSS (including heaptrack overhead): 211.01MB
total memory leaked: 67.58KB
heaptrack.opt.3-n4.gz
total runtime: 12.28s.
calls to allocation functions: 6068532 (494260/s)
temporary memory allocations: 2418985 (197017/s)
peak heap memory consumption: 155.43MB
peak RSS (including heaptrack overhead): 201.77MB
total memory leaked: 67.58KB
heaptrack.opt.4-n8.gz
total runtime: 12.06s.
calls to allocation functions: 6068042 (503321/s)
temporary memory allocations: 2418992 (200646/s)
peak heap memory consumption: 166.03MB
peak RSS (including heaptrack overhead): 213.55MB
total memory leaked: 67.58KB
heaptrack.opt.5-n16.gz
total runtime: 12.14s.
calls to allocation functions: 6067993 (499958/s)
temporary memory allocations: 2418999 (199307/s)
peak heap memory consumption: 187.24MB
peak RSS (including heaptrack overhead): 233.69MB
total memory leaked: 67.58KB
```
While that test may be an edge worst-case scenario,
https://llvm-compile-time-tracker.com/compare.php?from=dee85d47d9f15fc268f7b18f279dac2774836615&to=98a57e31b1947d5bcdf4a5605ac2ab32b4bd5f63&stat=instructions
agrees that this also results in improvements in the usual situations.
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This is similar to the fix in c590a9880d ( PR49832 ), but
we missed handling the pattern for select of bools (no compare
inst).
We can't substitute a vector value because the equality condition
replacement that we are attempting requires that the condition
is true/false for the entire value. Vector select can be partly
true/false.
I added an assert for vector types, so we shouldn't hit this again.
Fixed formatting while auditing the callers.
https://llvm.org/PR50500
If a cmpxchg specifies acquire or seq_cst on failure, make sure we
generate code consistent with that ordering even if the success ordering
is not acquire/seq_cst.
At one point, it was ambiguous whether this sort of construct was valid,
but the C++ standad and LLVM now accept arbitrary combinations of
success/failure orderings.
This doesn't address the corresponding issue in AtomicExpand. (This was
reported as https://bugs.llvm.org/show_bug.cgi?id=33332 .)
Fixes https://bugs.llvm.org/show_bug.cgi?id=50512.
Differential Revision: https://reviews.llvm.org/D103284
Parameter positions seem like they should be unsigned.
While there, make function names lowercase per coding standards.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D103224
This patch changes LoopFlattenPass from FunctionPass to LoopNestPass.
Utilize LoopNest and let function 'Flatten' generate information from it.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102904
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch changes LoopFlattenPass from FunctionPass to LoopNestPass.
Utilize LoopNest and let function 'Flatten' generate information from it.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102904
This patch changes LoopFlattenPass from FunctionPass to LoopNestPass.
Utilize LoopNest and let function 'Flatten' generate information from it.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102904
The constructor of InOrderIssueStage no longer takes as input a reference to the
target scheduling model. The stage can always query the subtarget to obtain a
reference to the scheduling model.
The ResourceManager is no longer stored internally as a unique_ptr.
Moved a couple of method definitions to the .cpp file.
Moved the logic that checks for RAW hazards from the InOrderIssueStage to the
RegisterFile.
Changed how the InOrderIssueStage keeps track of backend stalls. Stall events
are now generated from method notifyStallEvent().
No functional change intended.
This is the first in a series of patches to provide builtins for
compatibility with the XL compiler. Most of the builtins already had
intrinsics and only needed to be implemented in the front end.
Intrinsics were created for the three iospace builtins, eieio, and icbt.
Pseudo instructions were created for eieio and iospace_eieio to
ensure that nops were inserted before the eieio instruction.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D102443
in stripDebugInfo(). This patch fixes an oversight in
https://reviews.llvm.org/D96181 and also takes into account loop
metadata pointing to other MDNodes that point into the debug info.
rdar://78487175
Differential Revision: https://reviews.llvm.org/D103220
Mark the `ELFRelocationEntry::dump` method as `LLVM_DUMP_METHOD` to
annotate it properly as used to prevent the function being dead stripped
away. This allows use of `dump` in the debugger. This is purely to
improve the developer experience.
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
This patch adds a way for the target to configure the type it uses for
the explicit vector length operands of VP SDNodes. The type must be a
legal integer type (there is still no target-independent legalization of
this operand) and must currently be at least as big as i32, the type
used by the IR intrinsics. An implicit zero-extension takes place on
targets which choose a larger type. All VP nodes should be created with
this type used for the EVL operand.
This allows 64-bit RISC-V to avoid custom legalization of all VP nodes,
keeping them in their target-independent form for that bit longer.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D103027
When lowering the dynamic, guided, auto and runtime types of scheduling,
there is an optional monotonic or non-monotonic modifier. This patch
adds support in the OMP IR Builder to pass this down to the runtime
functions.
Also implements tests for the variants.
Differential Revision: https://reviews.llvm.org/D102008
When lowering the dynamic, guided, auto and runtime types of scheduling,
there is an optional monotonic or non-monotonic modifier. This patch
adds support in the OMP IR Builder to pass this down to the runtime
functions.
Also implements tests for the variants.
Differential Revision: https://reviews.llvm.org/D102008
Thhis is a port from the DAG legalization. We're still missing some of the
canonicalizations of shuffles but it's a start.
Differential Revision: https://reviews.llvm.org/D102828
`non-global-value-max-name-size` is used by `Value` to cap the length of local value name. However, this flag is not considered by `LLParser`, which leads to unexpected `use of undefined value error`. The fix is to move the responsibility of capping the length to `ValueSymbolTable`.
The test is the one provided by [[ https://bugs.llvm.org/show_bug.cgi?id=45899 | Mikael in the bug report ]].
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D102707
There can be a need for some optimizations to get (base, offset)
for any GC pointer. The base can be calculated by generating
needed instructions as it is done by the
RewriteStatepointsForGC::findBasePointer() function. The offset
can be calculated in the same way. Though to not expose the base
calculation and to make the offset calculation as simple as
ptrtoint(derived_ptr) - ptrtoint(base_ptr), which is illegal
outside RS4GC, this patch introduces 2 intrinsics:
@llvm.experimental.gc.get.pointer.base(%derived_ptr)
@llvm.experimental.gc.get.pointer.offset(%derived_ptr)
These intrinsics are inlined by RS4GC along with generation of
statepoint sequences.
With these new intrinsics the GC parseable lowering for atomic
memcpy intrinsics (6ec2c5e402)
could be implemented as a separate pass.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D100445
There were a bunch of lost debug location remarks that show up when legalizing
tail calls on AArch64.
This would happen because we drop the return in the block where we emit the
tail call. So, we end up dropping the debug location, which makes the
LostDebugLocObserver report a missing debug location.
Although it's *true* that we lose these debug locations, this isn't
a particularly useful remark. We expect to drop these debug locations when
emitting tail calls. Suppressing remarks in this case is preferable, since the
amount of noise could hide actual debug location related bugs.
To do this, I just plumbed the LostDebugLocObserver through the relevant
LegalizerHelper functions. This is the only case I can think of where we need
the LostDebugLocObserver in the LegalizerHelper. So, rather than storing it
in the LegalizerHelper proper and mucking around with the constructors, I
figured it'd be cleanest to take the simplest path for now.
This clears up ~20 noisy lost debug location remarks on CTMark in AArch64 at
-Os.
Differential Revision: https://reviews.llvm.org/D103128
This patch introduces "DBG_PHI" instructions, a marker of where a PHI
instruction used to be, before PHI elimination. Under the instruction
referencing model, we want to know where every value in the function is
defined -- and a PHI, even if implicit, is such a place.
Just like instruction numbers, we can use this to identify a value to be
used as a variable value, but we don't need to know what instruction
defines that value, for example:
bb1:
DBG_PHI $rax, 1
[... more insts ... ]
bb2:
DBG_INSTR_REF 1, 0, !1234, !DIExpression()
This specifies that on entry to bb1, whatever value is in $rax is known
as value number one -- and the later DBG_INSTR_REF marks the position
where variable !1234 should take on value number one.
PHI locations are stored in MachineFunction for the duration of the
regalloc phase in the DebugPHIPositions map. The map is populated by
PHIElimination, and then flushed back into the instruction stream by
virtregrewriter. A small amount of maintenence is needed in
LiveDebugVariables to account for registers being split, but only for
individual positions, not for entire ranges of blocks.
Differential Revision: https://reviews.llvm.org/D86812
This patch implements getSmallConstantTripMultiple(L) correctly for multiple exit loops. The previous implementation was both imprecise, and violated the specified behavior of the method. This was fine in practice, because it turns out the function was both dead in real code, and not tested for the multiple exit case.
Differential Revision: https://reviews.llvm.org/D103189
DwarfDebug unconditionally assumes for all call instructions the 0th
operand is the callee operand, which seems to be true for other targets,
but not for WebAssembly. This adds `TargetInstrInfo::getCallOperand`
method whose default implementation returns `getOperand(0)` and makes
WebAssembly overrides it to use its own utility method to get the callee
operand.
This also fixes an existing bug in `WebAssembly::getCalleeOp`, which was
uncovered by this CL.
Reviewed By: dschuff, djtodoro
Differential Revision: https://reviews.llvm.org/D102978
This came up in review for another patch, see https://reviews.llvm.org/D102982#2782407 for full context.
I've reviewed the callers to make sure they can handle multiple exit loops w/non-zero returns. There's two cases in target cost models where results might change (Hexagon and PowerPC), but the results looked legal and reasonable. If a target maintainer wishes to back out the effect of the costing change, they should explicitly check for multiple exit loops and handle them as desired.
Differential Revision: https://reviews.llvm.org/D103182
In objdump, many targets support `-M no-aliases`. Instead of having a
`-*-no-aliases` for each target when LLVM adds the support, it makes more sense
to introduce objdump style `-M`.
-riscv-arch-reg-names is removed. -riscv-no-aliases has too many uses and thus is retained for now.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D103004
The current full unroll cost model does a symbolic evaluation of the loop up to a fixed limit. That symbolic evaluation currently simplifies to constants, but we can generalize to arbitrary Values using the InstructionSimplify infrastructure at very low cost.
By itself, this enables some simplifications, but it's mainly useful when combined with the branch simplification over in D102928.
Differential Revision: https://reviews.llvm.org/D102934
Support virtual, physical and tied i128 register operands in inline assembly.
i128 is on SystemZ not really supported and is not a legal type and generally
such a value will be split into two i64 parts. There are however some
instructions that require a pair of two GPR64 registers contained in the GR128
bit reg class, which is untyped.
For inline assmebly operands, it proved to be very cumbersome to first follow
the general behavior of splitting an i128 operand into two parts and then
later rebuild the INLINEASM MI to have one GR128 register. Instead, some
minor common code changes were made to SelectionDAGBUilder to only create one
GR128 register part to begin with. In particular:
- getNumRegisters() now has an optional parameter "RegisterVT" which is
passed by AddInlineAsmOperands() and GetRegistersForValue().
- The bitcasting in GetRegistersForValue is not performed if RegVT is
Untyped.
- The RC for a tied use in AddInlineAsmOperands() is now computed either from
the tied def (virtual register), or by getMinimalPhysRegClass() (physical
register).
- InstrEmitter.cpp:EmitCopyFromReg() has been fixed so that the register
class (DstRC) can also be computed for an illegal type.
In the SystemZ backend getNumRegisters(), splitValueIntoRegisterParts() and
joinRegisterPartsIntoValue() have been implemented to handle i128 operands.
Differential Revision: https://reviews.llvm.org/D100788
Review: Ulrich Weigand
When loop hints are passed via metadata, the allowReordering function
in LoopVectorizationLegality will allow the order of floating point
operations to be changed:
bool allowReordering() const {
// When enabling loop hints are provided we allow the vectorizer to change
// the order of operations that is given by the scalar loop. This is not
// enabled by default because can be unsafe or inefficient.
The -enable-strict-reductions flag introduced in D98435 will currently only
vectorize reductions in-loop if hints are used, since canVectorizeFPMath()
will return false if reordering is not allowed.
This patch changes canVectorizeFPMath() to query whether it is safe to
vectorize the loop with ordered reductions if no hints are used. For
testing purposes, an additional flag (-hints-allow-reordering) has been
added to disable the reordering behaviour described above.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D101836
Global values imply flags such as readable, writable, executable for the
sections that they will be placed in. Currently MC places all such
entries into the same section, using the first set of flags seen. This
can lead to situations in LTO where a writable global is placed in the
same named section as a readable global from another file, and the
section may not be marked writable.
D72194 ensures that mergeable globals with explicit sections are placed
in separate sections with compatible entry size, by emitting the
`unique` assembly syntax where appropriate. This change extends that
approach to include section flags, so that globals with different
section flags are emitted in separate unique sections.
Differential revision: https://reviews.llvm.org/D100944
Summary: This is a NFC patch to change the input parameter of the method SectionRef::isDebugSection(), by replacing the StringRef SectionName with DataRefImpl Sec. This allows us to determine if a section is debug type in more ways than just by section name.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D102601
Since the opaque pointer type won't contain the pointee type, we need to
separately encode the value type for an atomicrmw.
Emit this new code for atomicrmw.
Handle this new code and the old one in the bitcode reader.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D103123
Beside the `comdat any` deduplication feature, instrumentations use comdat to
establish dependencies among a group of sections, to prevent section based
linker garbage collection from discarding some members without discarding all.
LangRef acknowledges this usage with the following wording:
> All global objects that specify this key will only end up in the final object file if the linker chooses that key over some other key.
On ELF, for PGO instrumentation, a `__llvm_prf_cnts` section and its associated
`__llvm_prf_data` section are placed in the same GRP_COMDAT group. A
`__llvm_prf_data` is usually not referenced and expects the liveness of its
associated `__llvm_prf_cnts` to retain it.
The `setComdat(nullptr)` code (added by D10679) in InternalizePass can break the
use case (a `__llvm_prf_data` may be dropped with its associated `__llvm_prf_cnts` retained).
The main goal of this patch is to fix the dependency relationship.
I think it makes sense for InternalizePass to internalize a comdat and thus
suppress the deduplication feature, e.g. a relocatable link of a regular LTO can
create an object file affected by InternalizePass.
If a non-internal comdat in a.o is prevailed by an internal comdat in b.o, the
a.o references to the comdat definitions will be non-resolvable (references
cannot bind to STB_LOCAL definitions in b.o).
On PE-COFF, for a non-external selection symbol, deduplication is naturally
suppressed with link.exe and lld-link. However, this is fuzzy on ELF and I tend
to believe the spec creator has not thought about this use case (see D102973).
GNU ld and gold are still using the "signature is name based" interpretation.
So even if D102973 for ld.lld is accepted, for portability, a better approach is
to rename the comdat. A comdat with one single member is the common case,
leaving the comdat can waste (sizeof(Elf64_Shdr)+4*2) bytes, so we optimize by
deleting the comdat; otherwise we rename the comdat.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D103043
When memoized values for a SCEV expressions are dropped, we also
drop all BECounts that make use of the SCEV expression. This is done
by iterating over all the ExitNotTaken counts and (recursively)
checking whether they use the SCEV expression. If there are many
exits, this will take a lot of time.
This patch improves the situation by pre-computing a set of all
used operands, so that we can determine whether a certain BEInfo
needs to be invalidated using a simple set lookup. Will still need
to loop over all BEInfos though.
This makes for a mild improvement on non-degenerate cases:
https://llvm-compile-time-tracker.com/compare.php?from=b661a55a253f4a1cf5a0fbcb86e5ba7b9fb1387b&to=be1393f450e594c53f0ad7e62339a6bc831b16f6&stat=instructions
For the degenerate case from https://bugs.llvm.org/show_bug.cgi?id=50384,
for n=128 I'm seeing run time drop from 1.6s to 1.1s.
Differential Revision: https://reviews.llvm.org/D102796
- When memory intrinsics, such as memcpy, the attached scoped AA
metadata is not passed down to the backend. As a result, the backend
cannot schedule relevant memory operations around them following that
hint. In this patch, SelectionDAG is enhanced to propagate that
metadata (scoped AA only) when they are lowered into loads and stores.
Differential Revision: https://reviews.llvm.org/D102215
Currently, BPF only contains three relocations:
R_BPF_NONE for no relocation
R_BPF_64_64 for LD_imm64 and normal 64-bit data relocation
R_BPF_64_32 for call insn and normal 32-bit data relocation
Also .BTF and .BTF.ext sections contain symbols in allocated
program and data sections. These two sections reserved 32bit
space to hold the offset relative to the symbol's section.
When LLVM JIT is used, the LLVM ExecutionEngine RuntimeDyld
may attempt to resolve relocations for .BTF and .BTF.ext,
which we want to prevent. So we used R_BPF_NONE for such relocations.
This all works fine until when we try to do linking of
multiple objects.
. R_BPF_64_64 handling of LD_imm64 vs. normal 64-bit data
is different, so lld target->relocate() needs more context
to do a correct job.
. The same for R_BPF_64_32. More context is needed for
lld target->relocate() to differentiate call insn vs.
normal 32-bit data relocation.
. Since relocations in .BTF and .BTF.ext are set to R_BPF_NONE,
they will not be relocated properly when multiple .BTF/.BTF.ext
sections are merged by lld.
This patch intends to address this issue by adding additional
relocation kinds:
R_BPF_64_ABS64 for normal 64-bit data relocation
R_BPF_64_ABS32 for normal 32-bit data relocation
R_BPF_64_NODYLD32 for .BTF and .BTF.ext style relocations.
The old R_BPF_64_{64,32} semantics:
R_BPF_64_64 for LD_imm64 relocation
R_BPF_64_32 for call insn relocation
The existing R_BPF_64_64/R_BPF_64_32 mapping to numeric values
is maintained. They are the most common use cases for
bpf programs and we want to maintain backward compatibility
as much as possible.
ExecutionEngine RuntimeDyld BPF relocations are adjusted as well.
R_BPF_64_{ABS64,ABS32} relocations will be resolved properly and
other relocations will be ignored.
Two tests are added for RuntimeDyld. Not handling R_BPF_64_NODYLD32 in
RuntimeDyldELF.cpp will result in "Relocation type not implemented yet!"
fatal error.
FK_SecRel_4 usages in BPFAsmBackend.cpp and BPFELFObjectWriter.cpp
are removed as they are not triggered in BPF backend.
BPF backend used FK_SecRel_8 for LD_imm64 instruction operands.
Differential Revision: https://reviews.llvm.org/D102712
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.
Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.
Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035
Reviewed By: vitalybuka, morehouse
Differential Revision: https://reviews.llvm.org/D102772
The change is currently NFC, but exploited by the depending D102954.
Code to handle constants is borrowed from the general implementation
of Value::doRAUW().
Differential Revision: https://reviews.llvm.org/D103051
I cannot find documentation on this CPU, and it
is not supported by the Arm Compiler 5 product either.
It was likely a mistake or a different name for the
"ep9312", which is an Arm based Cirrus Logic chip.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D103024
This patch introduces new operations on jitlink::Blocks: setMutableContent,
getMutableContent and getAlreadyMutableContent. The setMutableContent method
will set the block content data and size members and flag the content as
mutable. The getMutableContent method will return a mutable copy of the existing
content value, auto-allocating and populating a new mutable copy if the existing
content is marked immutable. The getAlreadyMutableMethod asserts that the
existing content is already mutable and returns it.
setMutableContent should be used when updating the block with totally new
content backed by mutable memory. It can be used to change the size of the
block. The argument value should *not* be shared with any other block.
getMutableContent should be used when clients want to modify the existing
content and are unsure whether it is mutable yet.
getAlreadyMutableContent should be used when clients want to modify the existing
content and know from context that it must already be immutable.
These operations reduce copy-modify-update boilerplate and unnecessary copies
introduced when clients couldn't me sure whether the existing content was
mutable or not.
Intrumentation callbacks are not made aware of LoopNest passes. From the loop pass manager, we can pass the outermost loop of the LoopNest to instrumentation in case of LoopNest passes.
The current patch made the change in two places in StandardInstrumentation.cpp. I will submit a proper patch where the OuterMostLoop is passed from the LoopPassManager to the call backs. That way we will avoid making changes at multiple places in StandardInstrumentation.cpp.
A testcase also will be submitted.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102463
The findLoopPreheader function will currently not find a preheader if it
branches to multiple different loop headers. This patch adds an option
to relax that, allowing ARMLowOverheadLoops to process more loops
successfully. This helps with WhileLoopStart setup instructions that can
branch/fallthrough to the low overhead loop and to branch to a separate
loop from the same preheader (but I don't believe it is possible for
both loops to be low overhead loops).
Differential Revision: https://reviews.llvm.org/D102747
If we simplify values we sometimes end up with type mismatches. If the
value is a constant we can often cast it though to still allow
propagation. The logic is now put into a helper and it replaces some
ad hoc things we did before.
This also introduces the AA namespace for abstract attribute related
functions and types.
The state of AAPotentialValues tracks if undef is contained. It should
fold undef into the first non-undef value. However we missed a case
before. There was also a shadowing definition of two variables that
caused trouble. The test exposes both problems.
This makes it possible for targets to define their own MCObjectFileInfo.
This MCObjectFileInfo is then used to determine things like section alignment.
This is a follow up to D101462 and prepares for the RISCV backend defining the
text section alignment depending on the enabled extensions.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101921
The prevailing style does not add the message. The directive name is not useful
because the next line replicates the error line which includes the directive.
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
If exiting using _Exit or ExitProcess, DLLs are still unloaded
cleanly before exiting, running destructors and other cleanup in those
DLLs. When the caller expects to exit without cleanup, running
destructors in some loaded DLLs (which can be either libLLVM.dll or
e.g. libc++.dll) can cause deadlocks occasionally.
This is an alternative to D102684.
Differential Revision: https://reviews.llvm.org/D102944
Keeping these bitfields from Block to Addressable allows them to be packed with
the bitfields at the end of Addressable, reducing the size of Block by eight
bytes.
The implementation and intent behind freeing the triple string here is the same
as LLVMGetDefaultTargetTriple (and any other owned c string returned from the C
API), so we should use LLVMDisposeMessage for to free the string for
consistency.
Patch by Mats Larsen -- thanks Mats!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D102957
D88631 added initial support for:
- -mstack-protector-guard=
- -mstack-protector-guard-reg=
- -mstack-protector-guard-offset=
flags, and D100919 extended these to AArch64. Unfortunately, these flags
aren't retained for LTO. Make them module attributes rather than
TargetOptions.
Link: https://github.com/ClangBuiltLinux/linux/issues/1378
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D102742
These checks already exist as asserts when creating the corresponding
instruction. Anybody creating these instructions already need to take
care to not break these checks.
Move the checks for success/failure ordering in cmpxchg from the
verifier to the LLParser and BitcodeReader plus an assert.
Add some tests for cmpxchg ordering. The .bc files are created from the
.ll files with an llvm-as with these checks disabled.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102803
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
This reapplies c0f3dfb9, which was reverted following the discovery of
crashes on linux kernel and chromium builds - these issues have since
been fixed, allowing this patch to re-land.
This reverts commit 4397b7095d.
[Debugify][Original DI] Test dbg var loc preservation
This is an improvement of [0]. This adds checking of
original llvm.dbg.values()/declares() instructions in
optimizations.
We have picked a real issue that has been found with
this (actually, picked one variable location missing
from [1] and resolved the issue), and the result is
the fix for that -- D100844.
Before applying the D100844, using the options from [0]
(but with this patch applied) on the compilation of GDB 7.11,
the final HTML report for the debug-info issues can be found
at [1] (please scroll down, and look for
"Summary of Variable Location Bugs"). After applying
the D100844, the numbers has improved a bit -- please take
a look into [2].
[0] https://llvm.org/docs/HowToUpdateDebugInfo.html#\
test-original-debug-info-preservation-in-optimizations
[1] https://djolertrk.github.io/di-check-before-adce-fix/
[2] https://djolertrk.github.io/di-check-after-adce-fix/
Differential Revision: https://reviews.llvm.org/D100845
The Unit test was failing because the pass from the test that
modifies the IR, in its runOnFunction() didn't return 'true',
so the expensive-check configuration triggered an assertion.
We can't declare unique_function that has in its arguments a reference to
a template type with an incomplete argument.
For instance, we can't declare unique_function<void(SmallVectorImpl<A>&)>
when A is forward declared.
This is because SFINAE will trigger a hard error in this case, when instantiating
IsSizeLessThanThresholdT with the incomplete type.
This patch specialize AdjustedParamT for references to remove this error.
Committed on behalf of: @math-fehr (Fehr Mathieu)
Reviewed By: DaniilSuchkov, yrouban
Previously APFloat::convertToDouble may be called only for APFloats that
were built using double semantics. Other semantics like single precision
were not allowed although corresponding numbers could be converted to
double without loss of precision. The similar restriction applied to
APFloat::convertToFloat.
With this change any APFloat that can be precisely represented by double
can be handled with convertToDouble. Behavior of convertToFloat was
updated similarly. It make the conversion operations more convenient and
adds support for formats like half and bfloat.
Differential Revision: https://reviews.llvm.org/D102671
.byte supports string, so if the whole byte list are printable,
we can actually print the string for readability and LIT tests maintainence.
.byte 'H,'e,'l,'l,'o,',,' ,'w,'o,'r,'l,'d
->
.byte "Hello, world"
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D102814
Remove the `nosync` attribute from the memory intrinsic definitions
(i.e. memset, memcpy, memmove).
Like native memory accesses, memory intrinsics can be volatile. This is
indicated by an immarg in the intrinsic call. All else equal, a volatile
memory intrinsic is `sync`, so we cannot annotate the intrinsic functions
themselves as `nosync`. The attributor and function-attr passes know to
take the volatile bit into account.
Since `nosync` is a default attribute, this means we have to stop using
the DefaultAttrIntrinsic tablegen class for memory intrinsics, and
specify all default attributes other than `nosync` explicitly.
Most of the test changes are trivial churn, but one test case
(in nosync.ll) was in fact incorrect before this change.
Differential Revision: https://reviews.llvm.org/D102295
In D98289#inline-939112 @dblaikie said:
Perhaps this could be more informative about what makes the range list
index of 0 invalid? "index 0 out of range of range list table (with
range list base 0xXXX) with offset entry count of XX (valid indexes
0-(XX-1))" Maybe that's too verbose/not worth worrying about since
this'll only be relevant to DWARF producers trying to debug their
DWARFv5, maybe no one will ever see this message in practice. Just
a thought.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102851
EarlyCSE cannot distinguish between floating point instructions and
constrained floating point intrinsics that are marked as running in the
default FP environment. Said intrinsics are supposed to behave exactly the
same as the regular FP instructions. Teach EarlyCSE to handle them in that
case.
Differential Revision: https://reviews.llvm.org/D99962
The use of `SelectionDAG::getSplatValue` isn't guaranteed to return a
type-legal splat value as it may implicitly extract a vector element
from another shuffle. It is not permitted to introduce an illegal type
when lowering shuffles.
This patch addresses the crash by adding a boolean flag to
`getSplatValue`, defaulting to false, which when set will ensure a
type-legal return value. If it is unable to do that it will fail to
return a splat value.
I've been through the existing uses of `getSplatValue` in other targets
and was unable to find a need or test cases showing a need to update
their uses. In some cases, the call is made during `LegalizeVectorOps`
which may still produce illegal scalar types. In other situations, the
illegally-typed splat value may be quickly patched up to a legal type
(such as any-extending the returned `extract_vector_elt` up to a legal
type) before `LegalizeDAG` notices.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D102687
__table_base is know 64-bit, since in LLVM it represents a function pointer offset
__table_base32 is a copy in wasm32 for use in elem init expr, since no truncation may be used there.
New reloc R_WASM_TABLE_INDEX_REL_SLEB64 added
Differential Revision: https://reviews.llvm.org/D101784
This is a follow-up of D102201. After some discussion, it is a better idea
to upgrade all invalid uses of alignment attributes on function return
values and parameters, not just limited to void function return types.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102726
Linker scripts might not handle COMDAT sections. SLSHardeing adds
new section for each __llvm_slsblr_thunk_xN. This new option allows
the generation of the thunks into the normal text section to handle these
exceptional cases.
,comdat or ,noncomdat can be added to harden-sls to control the codegen.
-mharden-sls=[all|retbr|blr],nocomdat.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D100546
This is an improvement of [0]. This adds checking of
original llvm.dbg.values()/declares() instructions in
optimizations.
We have picked a real issue that has been found with
this (actually, picked one variable location missing
from [1] and resolved the issue), and the result is
the fix for that -- D100844.
Before applying the D100844, using the options from [0]
(but with this patch applied) on the compilation of GDB 7.11,
the final HTML report for the debug-info issues can be found
at [1] (please scroll down, and look for
"Summary of Variable Location Bugs"). After applying
the D100844, the numbers has improved a bit -- please take
a look into [2].
[0] https://llvm.org/docs/HowToUpdateDebugInfo.html\
[1] https://djolertrk.github.io/di-check-before-adce-fix/
[2] https://djolertrk.github.io/di-check-after-adce-fix/
Differential Revision: https://reviews.llvm.org/D100845
llvm::Any::TypeId::Id relies on the uniqueness of the address of a static
variable defined in a template function. hidden visibility implies vague linkage
for that variable, which does not guarantee the uniqueness of the address across
a binary and a shared library. This totally breaks the implementation of
llvm::Any.
Ideally, setting visibility to llvm::Any::TypeId::Id should be enough,
unfortunately this doesn't work as expected and we lack time (before 12.0.1
release) to understand why setting the visibility to llvm::Any does work.
See https://gcc.gnu.org/wiki/Visibility and
https://gcc.gnu.org/onlinedocs/gcc/Vague-Linkage.html
for more information on that topic.
Differential Revision: https://reviews.llvm.org/D101972
No verifier changes needed, the verifier currently doesn't check that
the pointer operand's pointee type matches the GEP type. There is a
similar check in GetElementPtrInst::Create() though.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102744
Summary:
Currently, only `OptimizationRemarks` can be emitted using a Function.
Add constructors to allow this for `OptimizationRemarksAnalysis` and
`OptimizationRemarkMissed` as well.
Reviewed By: jdoerfert thegameg
Differential Revision: https://reviews.llvm.org/D102784
For source-based coverage, the frontend sets the counter IDs and the
constraints of counter IDs is not defined. For e.g., the Rust frontend
until recently had a reserved counter #0
(https://github.com/rust-lang/rust/pull/83774). Rust coverage
instrumentation also creates counters on edges in addition to basic
blocks. Some functions may have more counters than regions.
This breaks an assumption in CoverageMapping.cpp where the number of
counters in a function is assumed to be bounded by the number of
regions:
Counts.assign(Record.MappingRegions.size(), 0);
This assumption causes CounterMappingContext::evaluate() to fail since
there are not enough counter values created in the above call to
`Counts.assign`. Consequently, some uncovered functions are not
reported in coverage reports.
This change walks a Function's CoverageMappingRecord to find the maximum
counter ID, and uses it to initialize the counter array when instrprof
records are missing for a function in sparse profiles.
Differential Revision: https://reviews.llvm.org/D101780
lld/MachO/Driver.cpp and lld/MachO/SyntheticSections.cpp include
llvm/Config/config.h which doesn't exist when building standalone lld.
This patch replaces llvm/Config/config.h include with llvm/Config/llvm-config.h
just like it is in lld/ELF/Driver.cpp and HAVE_LIBXAR with LLVM_HAVE_LIXAR and
moves LLVM_HAVE_LIBXAR from config.h to llvm-config.h
Also it adds LLVM_HAVE_LIBXAR to LLVMConfig.cmake and links liblldMachO2.so
with XAR_LIB if LLVM_HAVE_LIBXAR is set.
Differential Revision: https://reviews.llvm.org/D102084
The operation of some VP intrinsics do/will not map to regular
instruction opcodes. Returning 'None' seems more intuitive here than
'Instruction::Call'.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D102778
- This patch (is one in a series of patches) which introduces HLASM Parser support (for the first parameter of inline asm statements) to LLVM ([[ https://lists.llvm.org/pipermail/llvm-dev/2021-January/147686.html | main RFC here ]])
- This patch in particular introduces HLASM Parser support for Z machine instructions.
- The approach taken here was to subclass `AsmParser`, and make various functions and variables as "protected" wherever appropriate.
- The `HLASMAsmParser` class overrides the `parseStatement` function. Two new private functions `parseAsHLASMLabel` and `parseAsMachineInstruction` are introduced as well.
The general syntax is laid out as follows (more information available in [[ https://www.ibm.com/support/knowledgecenter/SSENW6_1.6.0/com.ibm.hlasm.v1r6.asm/asmr1023.pdf | HLASM V1R6 Language Reference Manual ]] - Chapter 2 - Instruction Statement Format):
```
<TokA><spaces.*><TokB><spaces.*><TokC><spaces.*><TokD>
```
1. TokA is referred to as the Name Entry. This token is optional
2. TokB is referred to as the Operation Entry. This token is mandatory.
3. TokC is referred to as the Operand Entry. This token is mandatory
4. TokD is referred to as the Remarks Entry. This token is optional
- If TokA is provided, then we either parse TokA as a possible comment or as a label (Name Entry), Tok B as the Operation Entry and so on.
- If TokA is not provided (i.e. we have one or more spaces and then the first token), then we will parse the first token (i.e TokB) as a possible Z machine instruction, TokC as the operands to the Z machine instruction and TokD as a possible Remark field
- TokC (Operand Entry), no spaces are allowed between OperandEntries. If a space occurs it is classified as an error.
- TokD if provided is taken as is, and emitted as a comment.
The following additional approach was examined, but not taken:
- Adding custom private only functions to base AsmParser class, and only invoking them for z/OS. While this would eliminate the need for another child class, these private functions would be of non-use to every other target. Similarly, adding any pure virtual functions to the base MCAsmParser class and overriding them in AsmParser would also have the same disadvantage.
Testing:
- This patch doesn't have tests added with it, for the sole reason that MCStreamer Support and Object File support hasn't been added for the z/OS target (yet). Hence, it's not possible generate code outright for the z/OS target. They are in the process of being committed / process of being worked on.
- Any comments / feedback on how to combat this "lack of testing" due to other missing required features is appreciated.
Reviewed By: Kai, uweigand
Differential Revision: https://reviews.llvm.org/D98276
Intriniscs reading or writing the FFR register need to model the fact
there is additional state being read/wrtten.
Model this state as inaccessible memory.
* setffr => write inaccessiblememonly
* rdffr => read inaccessiblememonly
* ldff* => read arg memory, write inaccessiblemem
* ldnf => read arg memory, write inaccessiblemem
There doesn't seem to be a need to support recursive locking,
and a recursive mutex is unnecessarily inefficient.
Differential Revision: https://reviews.llvm.org/D102486
This patch adds a new option to the LoopVectorizer to control how
scalable vectors can be used.
Initially, this suggests three levels to control scalable
vectorization, although other more aggressive options can be added in
the future.
The possible options are:
- Disabled: Disables vectorization with scalable vectors.
- Enabled: Vectorize loops using scalable vectors or fixed-width
vectors, but favors fixed-width vectors when the cost
is a tie.
- Preferred: Like 'Enabled', but favoring scalable vectors when the
cost-model is inconclusive.
Reviewed By: paulwalker-arm, vkmr
Differential Revision: https://reviews.llvm.org/D101945
To bring D99599's implementation in line with the existing
PrintPassInstrumentation, and to fix a FIXME, add more customizability
to PrintPassInstrumentation.
Introduce three new options. The first takes over the existing
"-debug-pass-manager-verbose" cl::opt.
The second and third option are specific to -fdebug-pass-structure. They
allow indentation, and also don't print analysis queries.
To avoid more golden file tests than necessary, prune down the
-fdebug-pass-structure tests.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102196
This patch transforms the sequence
lea (reg1, reg2), reg3
sub reg3, reg4
to two sub instructions
sub reg1, reg4
sub reg2, reg4
Similar optimization can also be applied to LEA/ADD sequence.
The modifications to TwoAddressInstructionPass is to ensure the operands of ADD
instruction has expected order (the dest register of LEA should be src register
of ADD).
Differential Revision: https://reviews.llvm.org/D101970
This patch implements first part of Flow Sensitive SampleFDO (FSAFDO).
It has the following changes:
(1) disable current discriminator encoding scheme,
(2) new hierarchical discriminator for FSAFDO.
For this patch, option "-enable-fs-discriminator=true" turns on the new
functionality. Option "-enable-fs-discriminator=false" (the default)
keeps the current SampleFDO behavior. When the fs-discriminator is
enabled, we insert a flag variable, namely, llvm_fs_discriminator, to
the object. This symbol will checked by create_llvm_prof tool, and used
to generate a profile with FS-AFDO discriminators enabled. If this
happens, for an extbinary format profile, create_llvm_prof tool
will add a flag to profile summary section.
Differential Revision: https://reviews.llvm.org/D102246
In many cases it is helpful to know at what address the resolved function starts.
This patch adds a new StartAddress member to the DILineInfo structure.
Reviewed By: jhenderson, dblaikie
Differential Revision: https://reviews.llvm.org/D102316
For opaque pointers, we're trying to avoid uses of
PointerType::getElementType().
A couple of ISel places use PointerType::getElementType(). Some of these
are easy to fix by using ArgListEntry's indirect types.
The inalloca type wasn't stored there, as opposed to preallocated and
byval which have their indirect types available, so add it and use it.
This is a reland after an MSan fix in D102667.
Differential Revision: https://reviews.llvm.org/D101713
Currently all AA analyses marked as preserved are stateless, not taking
into account their dependent analyses. So there's no need to mark them
as preserved, they won't be invalidated unless their analyses are.
SCEVAAResults was the one exception to this, it was treated like a
typical analysis result. Make it like the others and don't invalidate
unless SCEV is invalidated.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102032
Don't check that types match when the pointer operand is an opaque
pointer.
I would separate the Assembler and Verifier changes, but
verify-uselistorder in the Assembler test ends up running the verifier.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102450
Handle PDB writing errors like any other error in LLD: emit an error and
continue. This allows the linker to print timing data and summary data
after linking, which can be helpful for finding PDB size problems. Also
report how large the file would have been.
Example output:
lld-link: error: Output data is larger than 4 GiB. File size would have been 6,937,108,480
lld-link: error: failed to write PDB file ./chrome.dll.pdb
Summary
--------------------------------------------------------------------------------
33282 Input OBJ files (expanded from all cmd-line inputs)
4 PDB type server dependencies
0 Precomp OBJ dependencies
33396931 Input type records
... snip ...
Input File Reading: 59756 ms ( 45.5%)
GC: 7500 ms ( 5.7%)
ICF: 3336 ms ( 2.5%)
Code Layout: 6329 ms ( 4.8%)
PDB Emission (Cumulative): 46192 ms ( 35.2%)
Add Objects: 27609 ms ( 21.0%)
Type Merging: 16740 ms ( 12.8%)
Symbol Merging: 10761 ms ( 8.2%)
Publics Stream Layout: 9383 ms ( 7.1%)
TPI Stream Layout: 1678 ms ( 1.3%)
Commit to Disk: 3461 ms ( 2.6%)
--------------------------------------------------
Total Link Time: 131244 ms (100.0%)
Differential Revision: https://reviews.llvm.org/D102713
This patch introduces functionality used by BOLT when
re-linking the final binary. It adds to MemoryManager a new member
function allowStubAllocation to control whether this MemoryManager
supports increasing code size with stubs or not. Since BOLT can
rewrite some files in-place, it needs to avoid stub insertion done
by the linker. This patch also introduces allowsZeroSymbols to the
JITSymbolResolver class, enabling us to finish a link successfully
even when some symbols resolve to the value zero. When rewriting a
binary, sometimes we do need to resolve a target to zero in case
the input binary calls address zero and we want to be bug
compatible. We also expose reassignSectionAddress as it is used by
BOLT.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D97898
Use existing KnownBits helpers from KnownBits.h to simplify G_ICMPs.
E.g.
x == x -> true
x != x -> false
load(x) > 1 -> true (when the load is known to be greater than 1)
And so on.
Differential Revision: https://reviews.llvm.org/D102542
A long time ago LLDB wanted to start using StringRef instead of
C-Strings/ConstString but was blocked by the StringRef(const char *) ctor
asserting that the C-string isn't a nullptr. To workaround this, D24697
introduced a special function called withNullAsEmpty and that's what LLDB (and
only LLDB) started to use to build StringRefs from C-strings.
A bit later it seems that withNullAsEmpty was declared too awkward to use and
instead the assert in the StringRef constructor got removed (see D24904). The
rest of LLDB was then converted to StringRef by just calling the now perfectly
usable implicit constructor.
However, it seems that the original approach with withNullAsEmpty was never
touched again since then and now just exists as a function in StringRef that
is only used in a few places in LLDB.
I removed the few uses of withNullAsEmpty in D102597 and this patch removes
the function itself. Calling the implicit StringRef(const char *) constructor
is the preferred way of doing this today.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D102599
This patch is the Part-1 (FE Clang) implementation of HW Exception handling.
This new feature adds the support of Hardware Exception for Microsoft Windows
SEH (Structured Exception Handling).
This is the first step of this project; only X86_64 target is enabled in this patch.
Compiler options:
For clang-cl.exe, the option is -EHa, the same as MSVC.
For clang.exe, the extra option is -fasync-exceptions,
plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual.
NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change.
The rules for C code:
For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow
three rules:
* First, no exception can move in or out of _try region., i.e., no "potential
faulty instruction can be moved across _try boundary.
* Second, the order of exceptions for instructions 'directly' under a _try
must be preserved (not applied to those in callees).
* Finally, global states (local/global/heap variables) that can be read
outside of _try region must be updated in memory (not just in register)
before the subsequent exception occurs.
The impact to C++ code:
Although SEH is a feature for C code, -EHa does have a profound effect on C++
side. When a C++ function (in the same compilation unit with option -EHa ) is
called by a SEH C function, a hardware exception occurs in C++ code can also
be handled properly by an upstream SEH _try-handler or a C++ catch(...).
As such, when that happens in the middle of an object's life scope, the dtor
must be invoked the same way as C++ Synchronous Exception during unwinding
process.
Design:
A natural way to achieve the rules above in LLVM today is to allow an EH edge
added on memory/computation instruction (previous iload/istore idea) so that
exception path is modeled in Flow graph preciously. However, tracking every
single memory instruction and potential faulty instruction can create many
Invokes, complicate flow graph and possibly result in negative performance
impact for downstream optimization and code generation. Making all
optimizations be aware of the new semantic is also substantial.
This design does not intend to model exception path at instruction level.
Instead, the proposed design tracks and reports EH state at BLOCK-level to
reduce the complexity of flow graph and minimize the performance-impact on CPP
code under -EHa option.
One key element of this design is the ability to compute State number at
block-level. Our algorithm is based on the following rationales:
A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping
into a _try is not allowed. The single entry must start with a seh_try_begin()
invoke with a correct State number that is the initial state of the SEME.
Through control-flow, state number is propagated into all blocks. Side exits
marked by seh_try_end() will unwind to parent state based on existing
SEHUnwindMap[].
Note side exits can ONLY jump into parent scopes (lower state number).
Thus, when a block succeeds various states from its predecessors, the lowest
State triumphs others. If some exits flow to unreachable, propagation on those
paths terminate, not affecting remaining blocks.
For CPP code, object lifetime region is usually a SEME as SEH _try.
However there is one rare exception: jumping into a lifetime that has Dtor but
has no Ctor is warned, but allowed:
Warning: jump bypasses variable with a non-trivial destructor
In that case, the region is actually a MEME (multiple entry multiple exits).
Our solution is to inject a eha_scope_begin() invoke in the side entry block to
ensure a correct State.
Implementation:
Part-1: Clang implementation described below.
Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end().
_scope_begin() is immediately added after ctor() is called and EHStack is pushed.
So it must be an invoke, not a call. With that it's also guaranteed an
EH-cleanup-pad is created regardless whether there exists a call in this scope.
_scope_end is added before dtor(). These two intrinsics make the computation of
Block-State possible in downstream code gen pass, even in the presence of
ctor/dtor inlining.
Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark
_try boundary and to prevent from exceptions being moved across _try boundary.
All memory instructions inside a _try are considered as 'volatile' to assure
2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's
acceptable as the amount of code directly under _try is very small.
Part-2 (will be in Part-2 patch): LLVM implementation described below.
For both C++ & C-code, the state of each block is computed at the same place in
BE (WinEHPreparing pass) where all other EH tables/maps are calculated.
In addition to _scope_begin & _scope_end, the computation of block state also
rely on the existing State tracking code (UnwindMap and InvokeStateMap).
For both C++ & C-code, the state of each block with potential trap instruction
is marked and reported in DAG Instruction Selection pass, the same place where
the state for -EHsc (synchronous exceptions) is done.
If the first instruction in a reported block scope can trap, a Nop is injected
before this instruction. This nop is needed to accommodate LLVM Windows EH
implementation, in which the address in IPToState table is offset by +1.
(note the purpose of that is to ensure the return address of a call is in the
same scope as the call address.
The handler for catch(...) for -EHa must handle HW exception. So it is
'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches
C++ exceptions).
Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW
exceptions can be passed through.
Original llvm-dev [RFC] discussions can be found in these two threads below:
https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.htmlhttps://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html
Differential Revision: https://reviews.llvm.org/D80344/new/
Similar versions of these already exist, this effectively just just
factors them out into STLExtras. I plan to use these in future patches.
Differential Revision: https://reviews.llvm.org/D100672
Follow up to D88631 but for aarch64; the Linux kernel uses the command
line flags:
1. -mstack-protector-guard=sysreg
2. -mstack-protector-guard-reg=sp_el0
3. -mstack-protector-guard-offset=0
to use the system register sp_el0 for the stack canary, enabling the
kernel to have a unique stack canary per task (like a thread, but not
limited to userspace as the kernel can preempt itself).
Address pr/47341 for aarch64.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/289
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: xiangzhangllvm, DavidSpickett, dmgreen
Differential Revision: https://reviews.llvm.org/D100919
This patch contains the bare minimum to run the new Pass Manager from the LLVM-C APIs. It does not feature PGOOptions, PassPlugins or Debugify in its current state. Bugzilla: PR48499
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102136
This patch contains the bare minimum to run the new Pass Manager from the LLVM-C APIs. It does not feature PGOOptions, PassPlugins or Debugify in its current state. Bugzilla: PR48499
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102136