When parsing goto labels, Names and Exprs are expanded but Constraints
is not, this may cause a out-of-bounds read later in:
// GCCAsmStmt::GCCAsmStmt
// `constraints` has only `NumExprs - NumLabels` elements
Constraints = new (C) StringLiteral*[NumExprs];
std::copy(constraints, constraints + NumExprs, Constraints);
llvm-svn: 362067
Syntax:
asm [volatile] goto ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
New llvm IR is "callbr" for inline asm goto instead "call" for inline asm
For:
asm goto("testl %0, %0; jne %l1;" :: "r"(cond)::label_true, loop);
IR:
callbr void asm sideeffect "testl $0, $0; jne ${1:l};", "r,X,X,~{dirflag},~{fpsr},~{flags}"(i32 %0, i8* blockaddress(@foo, %label_true), i8* blockaddress(@foo, %loop)) #1
to label %asm.fallthrough [label %label_true, label %loop], !srcloc !3
asm.fallthrough:
Compiler need to generate:
1> a dummy constarint 'X' for each label.
2> an unique fallthrough label for each asm goto stmt " asm.fallthrough%number".
Diagnostic
1> duplicate asm operand name are used in output, input and label.
2> goto out of scope.
llvm-svn: 362045
This patch adjusts `PragmaOpenMPHandler` to set the location of
`tok::annot_pragma_openmp` to the `#pragma` location instead of the
`omp` location so that the former becomes the start location of the
OpenMP AST node. This can be useful when, for example, rewriting a
directive using Clang's Rewrite facility. Most of this patch updates
tests for changes to locations in diagnostics and `-ast-dump` output.
Reviewed By: ABataev, lebedev.ri, Meinersbur, aaron.ballman
Differential Revision: https://reviews.llvm.org/D61509
llvm-svn: 361867
Support the OpenCL C pipe feature in C++ for OpenCL mode, to preserve
backwards compatibility with OpenCL C.
Various changes had to be made in Parse and Sema to enable
pipe-specific diagnostics, so enable a SemaOpenCL test for C++.
Differential Revision: https://reviews.llvm.org/D62181
llvm-svn: 361382
Currently, a pragma AST node's recorded location starts at the
namespace token (such as `omp` in the case of OpenMP) after the
`#pragma` token, and the `#pragma` location isn't available. However,
the `#pragma` location can be useful when, for example, rewriting a
directive using Clang's Rewrite facility.
This patch makes `#pragma` locations available in any `PragmaHandler`
but it doesn't yet make use of them.
This patch also uses the new `struct PragmaIntroducer` to simplify
`Preprocessor::HandlePragmaDirective`. It doesn't do the same for
`PPCallbacks::PragmaDirective` because that changes the API documented
in `clang-tools-extra/docs/pp-trace.rst`, and I'm not sure about
backward compatibility guarantees there.
Reviewed By: ABataev, lebedev.ri, aaron.ballman
Differential Revision: https://reviews.llvm.org/D61643
llvm-svn: 361335
This permits an init-capture to introduce a new pack:
template<typename ...T> auto x = [...a = T()] { /* a is a pack */ };
To support this, the mechanism for allowing ParmVarDecls to be packs has
been extended to support arbitrary local VarDecls.
llvm-svn: 361300
message sends, designators, and attributes.
Instead of having the tentative parsing phase sometimes return an
indicator to say what diagnostic to produce if parsing fails and
sometimes ask the caller to run it again, consistently ask the caller to
try parsing again if tentative parsing would fail or is otherwise unable
to completely parse the lambda-introducer without producing an
irreversible semantic effect.
Mostly NFC, but we should recover marginally better in some error cases
(avoiding duplicate diagnostics).
llvm-svn: 361182
Summary:
This adds a new error for missing parentheses around lambdas in delete operators.
```
int main() {
delete []() { return new int(); }();
}
```
This will result in:
```
test.cpp:2:3: error: '[]' after delete interpreted as 'delete[]'
delete []() { return new int(); }();
^~~~~~~~~
test.cpp:2:9: note: add parentheses around the lambda
delete []() { return new int(); }();
^
( )
```
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: riccibruno, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D36357
llvm-svn: 361119
Summary:
By adding a hook to consume all tokens produced by the preprocessor.
The intention of this change is to make it possible to consume the
expanded tokens without re-runnig the preprocessor with minimal changes
to the preprocessor and minimal performance penalty when preprocessing
without recording the tokens.
The added hook is very low-level and reconstructing the expanded token
stream requires more work in the client code, the actual algorithm to
collect the tokens using this hook can be found in the follow-up change.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: eraman, nemanjai, kbarton, jsji, riccibruno, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59885
llvm-svn: 361007
Summary:
This patch implements the source location builtins `__builtin_LINE(), `__builtin_FUNCTION()`, `__builtin_FILE()` and `__builtin_COLUMN()`. These builtins are needed to implement [`std::experimental::source_location`](https://rawgit.com/cplusplus/fundamentals-ts/v2/main.html#reflection.src_loc.creation).
With the exception of `__builtin_COLUMN`, GCC also implements these builtins, and Clangs behavior is intended to match as closely as possible.
Reviewers: rsmith, joerg, aaron.ballman, bogner, majnemer, shafik, martong
Reviewed By: rsmith
Subscribers: rnkovacs, loskutov, riccibruno, mgorny, kunitoki, alexr, majnemer, hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D37035
llvm-svn: 360937
(and less wrong).
It's not correct to assume that X<something, Type> is always a
template-id; there are a few cases where the comma takes us into a
non-expression syntactic context in which 'Type' might be permissible.
Stop doing that.
This slightly regresses our error recovery on the cases where the
construct is intended to be a template-id. We typically do still manage
to diagnose a missing 'template' keyword, but we realize this too late
to properly recover from the error.
This fixes a regression introduced by r360308.
llvm-svn: 360827
Without this, gcc (7.4) complains with
../tools/clang/lib/Parse/ParseDecl.cpp:3937:63: error: suggest parentheses around '&&' within '||' [-Werror=parentheses]
assert(!isAlreadyConsumed || RangeEnd != SourceLocation() &&
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~
"both or neither of isAlreadyConsumed and "
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"RangeEnd needs to be set");
~
llvm-svn: 360333
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
Summary:
- For template arguments ending with `>>>`, we should cease lookahead
and treat it as type-id firstly, so that deduction could work
properly.
Reviewers: tra, yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61396
llvm-svn: 360214
Keep looking for decl-specifiers after an unknown identifier. Don't
issue diagnostics about an error type specifier conflicting with later
type specifiers.
llvm-svn: 360117
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
new expression.
This was voted into C++20 as a defect report resolution, so we
retroactively apply it to all prior language modes (though it can never
actually be used before C++11 mode).
llvm-svn: 360006
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
The parser was dealing with unexpected "template" keywords after "using"
keywords too late and putting the parser into the wrong state, which could
lead to a crash down the line. This change allows the parser to consume the
bad "template" keywords earlier, and continue parsing as if "template" was
never there to begin with for better error recovery.
llvm-svn: 359740
We correct some typos in `ActOnArraySubscriptExpr` and
`ActOnOMPArraySectionExpr`, so when their result is `ExprError`, we can
end up correcting delayed typos in the same expressions again. In
general it is OK but when `NumTypos` is incorrect, we can hit the
assertion
> Assertion failed: (Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"), function getTypoExprState, file clang/lib/Sema/SemaLookup.cpp, line 5219.
Fix by replacing some subscript `ExprResult` with typo-corrected expressions
instead of keeping the original expressions. Thus if original expressions
contained `TypoExpr`, we'll use corrected expressions instead of trying to
correct them again.
rdar://problem/47403222
Reviewers: rsmith, erik.pilkington, majnemer
Reviewed By: erik.pilkington
Subscribers: jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D60848
llvm-svn: 359713
and the global and private module fragment.
For now, the private module fragment introducer is ignored, but use of
the global module fragment introducer should be properly enforced.
llvm-svn: 358353
We want to make objc_nonlazy_class apply to implementations, but ran into this.
There doesn't seem to be any reason that this isn't supported.
Differential revision: https://reviews.llvm.org/D60542
llvm-svn: 358200
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
Fixed bug in C++ to prevent parsing 'private' as a
valid address space qualifier.
Differential Revision: https://reviews.llvm.org/D59874
llvm-svn: 357162
The various CorrectionCandidateCallbacks are currently heap-allocated
unconditionally. This was needed because of delayed typo correction.
However these allocations represent currently 15.4% of all allocations
(number of allocations) when parsing all of Boost (!), mostly because
of ParseCastExpression, ParseStatementOrDeclarationAfterAttrtibutes
and isCXXDeclarationSpecifier. Note that all of these callback objects
are small. Let's not do this.
Instead initially allocate the callback on the stack, and only do a
heap allocation if we are going to do some typo correction. Do this by:
1. Adding a clone function to each callback, which will do a polymorphic
clone of the callback. This clone function is required to be implemented
by every callback (of which there is a fair amount). Make sure this is
the case by making it pure virtual.
2. Use this clone function when we are going to try to correct a typo.
This additionally cut the time of -fsyntax-only on all of Boost by 0.5%
(not that much, but still something). No functional changes intended.
Differential Revision: https://reviews.llvm.org/D58827
Reviewed By: rnk
llvm-svn: 356925
For backwards compatibility we allow alternative spelling of address
spaces - 'private', 'local', 'global', 'constant', 'generic'.
In order to accept 'private' correctly, parsing has been changed to
understand different use cases - access specifier vs address space.
Fixes PR40707 and PR41011!
Differential Revision: https://reviews.llvm.org/D59603
llvm-svn: 356888
Summary:
https://reviews.llvm.org/D59076 added a new coroutine error that
prevented users from using 'co_await' or 'co_yield' within a exception
handler. However, it was reverted in https://reviews.llvm.org/rC356774
because it caused a regression in nested scopes in C++ catch statements,
as documented by https://bugs.llvm.org/show_bug.cgi?id=41171.
The issue was due to an incorrect use of a `clang::ParseScope`. To fix:
1. Add a regression test for catch statement parsing that mimics the bug
report from https://bugs.llvm.org/show_bug.cgi?id=41171.
2. Re-apply the coroutines error patch from
https://reviews.llvm.org/D59076, but this time with the correct
ParseScope behavior.
Reviewers: GorNishanov, tks2103, rsmith, riccibruno, jbulow
Reviewed By: riccibruno
Subscribers: EricWF, jdoerfert, lewissbaker, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59752
llvm-svn: 356865
This adds support for static_assert() (and _Static_assert()) in
@interface/@implementation ivar lists and in @interface method declarations.
It was already supported in @implementation blocks outside of the ivar lists.
The assert AST nodes are added at file scope, matching where other
(non-Objective-C) declarations at @interface / @implementation level go (cf
`allTUVariables`).
Also add a `__has_feature(objc_c_static_assert)` that's true in C11 (and
`__has_extension(objc_c_static_assert)` that's always true) and
`__has_feature(objc_cxx_static_assert)` that's true in C++11 modea fter this
patch, so it's possible to check if this is supported.
Differential Revision: https://reviews.llvm.org/D59223
llvm-svn: 356148
Previously, we parsed it only in the top level, which excludes namespaces and
extern "C" blocks.
rdar://problem/48818890
Differential revision: https://reviews.llvm.org/D59282
llvm-svn: 356075