Commit Graph

219 Commits

Author SHA1 Message Date
Chandler Carruth fd9b4d9813 It helps to deallocate memory as well as allocate it. =] This actually
cleans up all the chains allocated during the processing of each
function so that for very large inputs we don't just grow memory usage
without bound.

llvm-svn: 144533
2011-11-14 10:57:23 +00:00
Chandler Carruth 0a31d149ea Remove an over-eager assert that was firing on one of the ARM regression
tests when I forcibly enabled block placement.

It is apparantly possible for an unanalyzable block to fallthrough to
a non-loop block. I don't actually beleive this is correct, I believe
that 'canFallThrough' is returning true needlessly for the code
construct, and I've left a bit of a FIXME on the verification code to
try to track down why this is coming up.

Anyways, removing the assert doesn't degrade the correctness of the algorithm.

llvm-svn: 144532
2011-11-14 10:55:53 +00:00
Chandler Carruth 0af6a0bb69 Begin chipping away at one of the biggest quadratic-ish behaviors in
this pass. We're leaving already merged blocks on the worklist, and
scanning them again and again only to determine each time through that
indeed they aren't viable. We can instead remove them once we're going
to have to scan the worklist. This is the easy way to implement removing
them. If this remains on the profile (as I somewhat suspect it will), we
can get a lot more clever here, as the worklist's order is essentially
irrelevant. We can use swapping and fold the two loops to reduce
overhead even when there are many blocks on the worklist but only a few
of them are removed.

llvm-svn: 144531
2011-11-14 09:46:33 +00:00
Chandler Carruth 84cd44c750 Under the hood, MBPI is doing a linear scan of every successor every
time it is queried to compute the probability of a single successor.
This makes computing the probability of every successor of a block in
sequence... really really slow. ;] This switches to a linear walk of the
successors rather than a quadratic one. One of several quadratic
behaviors slowing this pass down.

I'm not really thrilled with moving the sum code into the public
interface of MBPI, but I don't (at the moment) have ideas for a better
interface. My direction I'm thinking in for a better interface is to
have MBPI actually retain much more state and make *all* of these
queries cheap. That's a lot of work, and would require invasive changes.
Until then, this seems like the least bad (ie, least quadratic)
solution. Suggestions welcome.

llvm-svn: 144530
2011-11-14 09:12:57 +00:00
Chandler Carruth 1071cfa4ae Teach machine block placement to cope with unnatural loops. These don't
get loop info structures associated with them, and so we need some way
to make forward progress selecting and placing basic blocks. The
technique used here is pretty brutal -- it just scans the list of blocks
looking for the first unplaced candidate. It keeps placing blocks like
this until the CFG becomes tractable.

The cost is somewhat unfortunate, it requires allocating a vector of all
basic block pointers eagerly. I have some ideas about how to simplify
and optimize this, but I'm trying to get the logic correct first.

Thanks to Benjamin Kramer for the reduced test case out of GCC. Sadly
there are other bugs that GCC is tickling that I'm reducing and working
on now.

llvm-svn: 144516
2011-11-14 00:00:35 +00:00
Chandler Carruth c4a2cb34bb Cleanup some 80-columns violations and poor formatting. These snuck by
when I was reading through the code for style.

llvm-svn: 144513
2011-11-13 22:50:09 +00:00
Chandler Carruth 8e1d906734 Enhance the assertion mechanisms in place to make it easier to catch
when we fail to place all the blocks of a loop. Currently this is
happening for unnatural loops, and this logic helps more immediately
point to the problem.

llvm-svn: 144504
2011-11-13 21:39:51 +00:00
Chandler Carruth 0bb42c0f86 Teach MBP to force-merge layout successors for blocks with unanalyzable
branches that also may involve fallthrough. In the case of blocks with
no fallthrough, we can still re-order the blocks profitably. For example
instruction decoding will in some cases continue past an indirect jump,
making laying out its most likely successor there profitable.

Note, no test case. I don't know how to write a test case that exercises
this logic, but it matches the described desired semantics in
discussions with Jakob and others. If anyone has a nice example of IR
that will trigger this, that would be lovely.

Also note, there are still assertion failures in real world code with
this. I'm digging into those next, now that I know this isn't the cause.

llvm-svn: 144499
2011-11-13 12:17:28 +00:00
Chandler Carruth f9213fe721 Hoist another gross nested loop into a helper method.
llvm-svn: 144498
2011-11-13 11:42:26 +00:00
Chandler Carruth eb4ec3aea5 Add a missing doxygen comment for a helper method.
llvm-svn: 144497
2011-11-13 11:34:55 +00:00
Chandler Carruth b336172f90 Hoist a nested loop into its own method.
llvm-svn: 144496
2011-11-13 11:34:53 +00:00
Chandler Carruth 8d15078927 Rewrite #3 of machine block placement. This is based somewhat on the
second algorithm, but only loosely. It is more heavily based on the last
discussion I had with Andy. It continues to walk from the inner-most
loop outward, but there is a key difference. With this algorithm we
ensure that as we visit each loop, the entire loop is merged into
a single chain. At the end, the entire function is treated as a "loop",
and merged into a single chain. This chain forms the desired sequence of
blocks within the function. Switching to a single algorithm removes my
biggest problem with the previous approaches -- they had different
behavior depending on which system triggered the layout. Now there is
exactly one algorithm and one basis for the decision making.

The other key difference is how the chain is formed. This is based
heavily on the idea Andy mentioned of keeping a worklist of blocks that
are viable layout successors based on the CFG. Having this set allows us
to consistently select the best layout successor for each block. It is
expensive though.

The code here remains very rough. There is a lot that needs to be done
to clean up the code, and to make the runtime cost of this pass much
lower. Very much WIP, but this was a giant chunk of code and I'd rather
folks see it sooner than later. Everything remains behind a flag of
course.

I've added a couple of tests to exercise the issues that this iteration
was motivated by: loop structure preservation. I've also fixed one test
that was exhibiting the broken behavior of the previous version.

llvm-svn: 144495
2011-11-13 11:20:44 +00:00
Chandler Carruth ae4e800c5b Begin collecting some of the statistics for block placement discussed on
the mailing list. Suggestions for other statistics to collect would be
awesome. =]

Currently these are implemented as a separate pass guarded by a separate
flag. I'm not thrilled by that, but I wanted to be able to collect the
statistics for the old code placement as well as the new in order to
have a point of comparison. I'm planning on folding them into the single
pass if / when there is only one pass of interest.

llvm-svn: 143537
2011-11-02 07:17:12 +00:00
Chandler Carruth 30b63c6430 Sink an otherwise unused variable's initializer into the asserts that
used it. Fixes an unused variable warning from GCC on release builds.

llvm-svn: 142799
2011-10-24 16:51:55 +00:00
Chandler Carruth fd7475e906 Now that we have comparison on probabilities, add some static functions
to get important constant branch probabilities and use them for finding
the best branch out of a set of possibilities.

llvm-svn: 142762
2011-10-23 20:10:34 +00:00
Chandler Carruth 446210b616 Remove a commented out line of code that snuck by my auditing.
llvm-svn: 142761
2011-10-23 20:10:30 +00:00
Chandler Carruth bd1be4d01c Completely re-write the algorithm behind MachineBlockPlacement based on
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.

The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.

As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.

Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.

The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.

llvm-svn: 142743
2011-10-23 09:18:45 +00:00
Chandler Carruth 8b9737cb54 Add loop aligning to MachineBlockPlacement based on review discussion so
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.

This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.

Test is updated to include both basic loop alignment and nested loop
alignment.

llvm-svn: 142645
2011-10-21 08:57:37 +00:00
Chandler Carruth 1028142564 Implement a block placement pass based on the branch probability and
block frequency analyses. This differs substantially from the existing
block-placement pass in LLVM:

1) It operates on the Machine-IR in the CodeGen layer. This exposes much
   more (and more precise) information and opportunities. Also, the
   results are more stable due to fewer transforms ocurring after the
   pass runs.
2) It uses the generalized probability and frequency analyses. These can
   model static heuristics, code annotation derived heuristics as well
   as eventual profile loading. By basing the optimization on the
   analysis interface it can work from any (or a combination) of these
   inputs.
3) It uses a more aggressive algorithm, both building chains from tho
   bottom up to maximize benefit, and using an SCC-based walk to layout
   chains of blocks in a profitable ordering without O(N^2) iterations
   which the old pass involves.

The pass is currently gated behind a flag, and not enabled by default
because it still needs to grow some important features. Most notably, it
needs to support loop aligning and careful layout of loop structures
much as done by hand currently in CodePlacementOpt. Once it supports
these, and has sufficient testing and quality tuning, it should replace
both of these passes.

Thanks to Nick Lewycky and Richard Smith for help authoring & debugging
this, and to Jakob, Andy, Eric, Jim, and probably a few others I'm
forgetting for reviewing and answering all my questions. Writing
a backend pass is *sooo* much better now than it used to be. =D

llvm-svn: 142641
2011-10-21 06:46:38 +00:00