utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
This reverts commit r225498 (but leaves r225499, which was a worthy
cleanup).
My plan was to change `DEBUG_LOC` to store the `MDNode` directly rather
than its operands (patch was to go out this morning), but on reflection
it's not clear that it's strictly better. (I had missed that the
current code is unlikely to emit the `MDNode` at all.)
Conflicts:
lib/Bitcode/Reader/BitcodeReader.cpp (due to r225499)
llvm-svn: 225531
This reflects the typelessness of `Metadata` in the bitcode format,
removing types from all metadata operands.
`METADATA_VALUE` represents a `ValueAsMetadata`, and always has two
fields: the type and the value.
`METADATA_NODE` represents an `MDNode`, and unlike `METADATA_OLD_NODE`,
doesn't store types. It stores operands at their ID+1 so that `0` can
reference `nullptr` operands.
Part of PR21532.
llvm-svn: 224073
This allows streams that only use BLOCKINFO for debugging purposes to omit
the block entirely. As long as another stream is available with the correct
BLOCKINFO, the first stream can still be analyzed and dumped.
As part of this commit, BitstreamReader gets a move constructor and move
assignment operator, as well as a takeBlockInfo method.
llvm-svn: 216826
Predict and serialize use-list order in bitcode. This makes the option
`-preserve-bc-use-list-order` work *most* of the time, but this is still
experimental.
- Builds a full value-table up front in the writer, sets up a list of
use-list orders to write out, and discards the table. This is a
simpler first step than determining the order from the various
overlapping IDs of values on-the-fly.
- The shuffles stored in the use-list order list have an unnecessarily
large memory footprint.
- `blockaddress` expressions cause functions to be materialized
out-of-order. For now I've ignored this problem, so use-list orders
will be wrong for constants used by functions that have block
addresses taken. There are a couple of ways to fix this, but I
don't have a concrete plan yet.
- When materializing functions lazily, the use-lists for constants
will not be correct. This use case is out of scope: what should the
use-list order be, if it's incomplete?
This is part of PR5680.
llvm-svn: 214125
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.
llvm-svn: 169252
Always use an exit code of 1, but print the help message if useful.
Remove the exception handling tag in llvm-as, llvm-dis and
llvm-bcanalyzer, where it isn't used.
llvm-svn: 166767
This CL delays reading of function bodies from initial parse until
materialization, allowing overlap of compilation with bitcode download.
llvm-svn: 149918
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829