in Nadav's r139285 and r139287 commits.
1) Rename vsel.ll to a more descriptive name
2) Change the order of BLEND operands to "Op1, Op2, Cond", this is
necessary because PBLENDVB is already used in different places with
this order, and it was being emitted in the wrong way for vselect
3) Add AVX patterns and tests for the same SSE41 instructions
llvm-svn: 139305
Need branch relocation support to distinguish this encoding from the
16-bit Thumb1 encoding w/o the explicit .w suffix. That comes later, though.
llvm-svn: 139257
Choose 32-bit vs. 16-bit encoding when there's no .w suffix in post-processing
as match classes are insufficient to handle the context-sensitiveness of
the writeback operand's legality for the 16-bit encodings.
llvm-svn: 139242
duplicate tests are eliminated (for example if the two functions both have
a catch clause catching the same type, ensure the redundant one is removed).
Note that it would probably be safe to say that eh.typeid.for is 'const',
but since two calls to it with the same argument can give different results
(but only if the calls are in different functions), it seems more correct to
mark it only 'pure'; this doesn't get in the way of the optimization.
llvm-svn: 139236
(The fix for the related failures on x86 is going to be nastier because we actually need Acquire memoperands attached to the atomic load instrs, etc.)
llvm-svn: 139221
Now the 'S' instructions, e.g. ADDS, treat S bit as optional operand as well.
Also fix isel hook to correctly set the optional operand.
rdar://10073745
llvm-svn: 139157
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
llvm-svn: 139140