- Speed of "merge()", which merged data flow facts. This was doing a set canonicalization on every insertion, which was super slow.
To fix this, we use ImmutableSetRef.
- Visit CFGBlocks in reverse postorder. This is a huge speedup, as on some test cases the algorithm would take many iterations
to converge.
This contains a bunch of copy-paste from UninitializedValues.cpp and ThreadSafety.cpp. The idea
was to get something working first, and then refactor the common logic for all three files into
a separate analysis/library entry point.
llvm-svn: 139968
temporary objects and local variables. When detected, these split the
block, marking the new one as having only the exit block as a successor.
This prevents a large number of false positives in warnings sensitive to
no-return constructs such as -Wreturn-type, and fixes the remainder of
PR10063 along with several variations of this bug that had not been
reported. The test cases are extended across the board to cover these
patterns.
This also checks in a stress test for these types of CFGs. The stress
test declares some 32k variables, a mixture of no-return and normal
destructors. Previously, this resulted in roughly 2500 CFG blocks, but
didn't model any of the no-return destructors. With this patch, it
results in over 33k blocks, many of them now unreachable.
The nice thing about how the analyzer is set up? This causes *no*
regression in performance of building the CFG. It actually in some cases
makes it faster, as best I can benchmark. The analysis for -Wreturn-type
(and any other that cares about no-return code paths) is technically
slower now as it has to look at many more candidate blocks, but it
computes the correct answer. I have more test cases to follow, I think
they all work now. Also I have further work that should dramatically
simplify analyses in the presence of no-return.
llvm-svn: 139586
and case statements. Use this to make the logic in the CFG builder more
robust at finding the actual statements within a compound statement,
even when there are many layers of labels obscuring it.
Also extend the test cases for a large chunk of PR10063. Still more work
to do here though.
llvm-svn: 139437
incorrectly in the CFG, and also the static analyzer. This patch regresses the analyzer a bit, but
that needs to be followed up with a better solution.
Fixes <rdar://problem/10008112>.
llvm-svn: 138372
Having a notion of an actual ProgramPointTag will aid in introspection of the analyzer's behavior.
For example, the GraphViz output of the analyzer will pretty-print the tags in a useful manner.
llvm-svn: 137529
The motivation of this large change is to drastically simplify the logic in ExprEngine going forward.
Some fallout is that the output of some BugReporterVisitors is not as accurate as before; those will
need to be fixed over time. There is also some possible performance regression as RemoveDeadBindings
will be called frequently; this can also be improved over time.
llvm-svn: 136419
AnalysisBasedWarnings Sema layer and out of the Analysis library itself.
This returns the uninitialized values analysis to a more pure form,
allowing its original logic to correctly detect some categories of
definitely uninitialized values. Fixes PR10358 (again).
Thanks to Ted for reviewing and updating this patch after his rewrite of
several portions of this analysis.
llvm-svn: 135748
This is accomplished by forcing the needed expressions for -Wuninitialized to always be CFGElements in the CFG.
This allows us to remove a fair amount of the code for -Wuninitialized.
Some fallout:
- AnalysisBasedWarnings.cpp now specifically toggles the CFGBuilder to create a CFG that is suitable for -Wuninitialized. This
is a layering violation, since the logic for -Wuninitialized is in libAnalysis. This can be fixed with the proper refactoring.
- Some of the source locations for -Wunreachable-code warnings have shifted. While not ideal, this is okay because that analysis
already needs some serious reworking.
llvm-svn: 135480
patch, we actually move the state-machine for the value set backwards
one step. This can pretty easily lead to infinite loops where we
continually try to propagate a bit, succeed for one iteration, but then
back up because we find an uninitialized use.
A reduced test case from PR10379 is included.
llvm-svn: 135359