adding an "i" to the suffix, indicating that the elements are integers, is
accepted but not part of the standard syntax. This helps us pass a few more
of the Neon tests from gcc.
llvm-svn: 93677
Nodes that had children outside of the post dominator tree (infinite loops)
where removed from the post dominator tree. This seems to be wrong. Leave them
in the tree.
llvm-svn: 93633
This patch also cleans up code that expects there to be a bitcast in the first argument and testcases that call llvm.dbg.declare.
It also strips old llvm.dbg.declare intrinsics that did not pass metadata as the first argument.
llvm-svn: 93531
added to the FSub version. However, the original version of this xform guarded
against doing this for floating point (!Op0->getType()->isFPOrFPVector()).
This is causing LLVM to perform incorrect xforms for code like:
void func(double *rhi, double *rlo, double xh, double xl, double yh, double yl){
double mh, ml;
double c = 134217729.0;
double up, u1, u2, vp, v1, v2;
up = xh*c;
u1 = (xh - up) + up;
u2 = xh - u1;
vp = yh*c;
v1 = (yh - vp) + vp;
v2 = yh - v1;
mh = xh*yh;
ml = (((u1*v1 - mh) + (u1*v2)) + (u2*v1)) + (u2*v2);
ml += xh*yl + xl*yh;
*rhi = mh + ml;
*rlo = (mh - (*rhi)) + ml;
}
The last line was optimized away, but rl is intended to be the difference
between the infinitely precise result of mh + ml and after it has been rounded
to double precision.
llvm-svn: 93369
different BlockAddress labels, but nothing semantically important.
Add a FIXME that BlockAddress codegen is broken if the LLVM BB has
an empty name (e.g. strip was run).
llvm-svn: 93303
For now, this pass is fairly conservative. It only perform the replacement when both the pre- and post- extension values are used in the block. It will miss cases where the post-extension values are live, but not used.
llvm-svn: 93278
in JT.
2) When cloning blocks for PHI or xor conditions, use
instsimplify to simplify the code as we go. This allows us to
squish common cases early in JT which opens up opportunities for
subsequent iterations, and allows it to completely simplify the
testcase.
llvm-svn: 93253
condition is a xor with a phi node. This eliminates nonsense
like this from 176.gcc in several places:
LBB166_84:
testl %eax, %eax
- setne %al
- xorb %cl, %al
- notb %al
- testb $1, %al
- je LBB166_85
+ je LBB166_69
+ jmp LBB166_85
This is rdar://7391699
llvm-svn: 93221
has an immediate with at least 32 bits of leading zeros, to avoid needing to
materialize that immediate in a register first.
FileCheckize, tidy, and extend a testcase to cover this case.
This fixes rdar://7527390.
llvm-svn: 93160
new AsmPrinter. This is perhaps less elegant than describing them
in terms of MOV32r0 and subreg operations, but it allows the
current register to rematerialize them.
llvm-svn: 93158
ignore alignment requirements for SIMD memory operands. This
is useful on architectures like the AMD 10h that do not trap on
unaligned references if a status bit is twiddled at startup time.
llvm-svn: 93151
BitsToClear case. This allows it to promote expressions which have an
and/or/xor after the lshr, promoting cases like test2 (from PR4216)
and test3 (random extample extracted from a spec benchmark).
clang now compiles the code in PR4216 into:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
orl $32768, %edi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
instead of:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
shrl $8, %edi
orl $128, %edi
shlq $8, %rdi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
which is still not great, but is progress.
llvm-svn: 93145
new BitsToClear result which allows us to start promoting
expressions that end with a lshr-by-constant. This is
conservatively correct and better than what we had before
(see testcases) but still needs to be extended further.
llvm-svn: 93144
the zext dest type. This allows us to handle test52/53 in cast.ll,
and allows llvm-gcc to generate much better code for PR4216 in -m64
mode:
_test_bitfield: ## @test_bitfield
orl $32962, %edi
movl %edi, %eax
andl $-25350, %eax
ret
This also fixes a bug handling vector extends, ensuring that the
mask produced is a vector constant, not an integer constant.
llvm-svn: 93127
elimination of a sign extend to be a win, which simplifies
the client of CanEvaluateSExtd, and allows us to eliminate
more casts (examples taken from real code).
llvm-svn: 93109
lshr+ashr instead of trunc+sext. We want to avoid type
conversions whenever possible, it is easier to codegen expressions
without truncates and extensions.
llvm-svn: 93107
1) don't try to optimize a sext or zext that is only used by a trunc, let
the trunc get optimized first. This avoids some pointless effort in
some common cases since instcombine scans down a block in the first pass.
2) Change the cost model for zext elimination to consider an 'and' cheaper
than a zext. This allows us to do it more aggressively, and for the next
patch to simplify the code quite a bit.
llvm-svn: 93097
R11, and then asserting that the target was in R9. Since R9 isn't reserved for
the target anymore, and is used as an argument, this patch changes the
assertion.
llvm-svn: 93065
really does need to be a vector type, because
TargetLowering::getOperationAction for SIGN_EXTEND_INREG uses that type,
and it needs to be able to distinguish between vectors and scalars.
Also, fix some more issues with legalization of vector casts.
llvm-svn: 93043
When folding a and(any_ext(load)) both the any_ext and the
load have to have only a single use.
This removes the anyext-uses.ll testcase which started failing
because it is unreduced and unclear what it is testing.
llvm-svn: 92950
to an element of a vector in a static ctor) which occurs with an
unrelated patch I'm testing. Annoyingly, EvaluateStoreInto basically
does exactly the same stuff as InsertElement constant folding, but it
now handles vectors, and you can't insertelement into a vector. It
would be 'really nice' if GEP into a vector were not legal.
llvm-svn: 92889
(OP (trunc x), (trunc y)) -> (trunc (OP x, y))
Unfortunately this simple change causes dag combine to infinite looping. The problem is the shrink demanded ops optimization tend to canonicalize expressions in the opposite manner. That is badness. This patch disable those optimizations in dag combine but instead it is done as a late pass in sdisel.
This also exposes some deficiencies in dag combine and x86 setcc / brcond lowering. Teach them to look pass ISD::TRUNCATE in various places.
llvm-svn: 92849
phi nodes when deciding which pointers point to local memory.
I actually checked long ago how useful this is, and it isn't
very: it hardly ever fires in the testsuite, but since Chris
wants it here it is!
llvm-svn: 92836
memcpy, memset and other intrinsics that only access their arguments
to be readnone if the intrinsic's arguments all point to local memory.
This improves the testcase in the README to readonly, but it could in
theory be made readnone, however this would involve more sophisticated
analysis that looks through the memcpy.
llvm-svn: 92829
Previously, instcombine would only promote an expression tree to
the larger type if doing so eliminated two casts. This is because
a need to manually do the sign extend after the promoted expression
tree with two shifts. Now, we keep track of whether the result of
the computation is going to be properly sign extended already. If
so, we can unconditionally promote the expression, which allows us
to zap more sext's.
This implements rdar://6598839 (aka gcc pr38751)
llvm-svn: 92815
when doing this transform if the GEP is not inbounds. No testcase because
it is very difficult to trigger this: instcombine already canonicalizes
GEP indices to pointer size, so it relies specific permutations of the
instcombine worklist.
Thanks to Duncan for pointing this possible problem out.
llvm-svn: 92495
on the example in PR4216. This doesn't trigger in the testsuite,
so I'd really appreciate someone scrutinizing the logic for
correctness.
llvm-svn: 92458
when a consequtive sequence of elements all satisfies the
predicate. Like the double compare case, this generates better
code than the magic constant case and generalizes to more than
32/64 element array lookups.
Here are some examples where it triggers. From 403.gcc, most
accesses to the rtx_class array are handled, e.g.:
@rtx_class = constant [153 x i8] c"xxxxxmmmmmmmmxxxxxxxxxxxxmxxxxxxiiixxxxxxxxxxxxxxxxxxxooxooooooxxoooooox3x2c21c2222ccc122222ccccaaaaaa<<<<<<<<<<<<<<<<<<111111111111bbooxxxxxxxxxxcc2211x", align 32 ; <[153 x i8]*> [#uses=547]
%142 = icmp eq i8 %141, 105
@rtx_class = constant [153 x i8] c"xxxxxmmmmmmmmxxxxxxxxxxxxmxxxxxxiiixxxxxxxxxxxxxxxxxxxooxooooooxxoooooox3x2c21c2222ccc122222ccccaaaaaa<<<<<<<<<<<<<<<<<<111111111111bbooxxxxxxxxxxcc2211x", align 32 ; <[153 x i8]*> [#uses=543]
%165 = icmp eq i8 %164, 60
Also, most of the 59-element arrays (mode_class/rid_to_yy, etc)
optimized before are actually range compares. This lets 32-bit
machines optimize them.
400.perlbmk has stuff like this:
400.perlbmk: PL_regkind, even for 32-bit:
@PL_regkind = constant [62 x i8] c"\00\00\02\02\02\06\06\06\06\09\09\0B\0B\0D\0E\0E\0E\11\12\12\14\14\16\16\18\18\1A\1A\1C\1C\1E\1F !!!$$&'((((,-.///88886789:;8$", align 32 ; <[62 x i8]*> [#uses=4]
%811 = icmp ne i8 %810, 33
@PL_utf8skip = constant [256 x i8] c"\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\01\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\02\03\03\03\03\03\03\03\03\03\03\03\03\03\03\03\03\04\04\04\04\04\04\04\04\05\05\05\05\06\06\07\0D", align 32 ; <[256 x i8]*> [#uses=94]
%12 = icmp ult i8 %10, 2
etc.
llvm-svn: 92426
two elements match or don't match with two comparisons. For
example, the testcase compiles into:
define i1 @test5(i32 %X) {
%1 = icmp eq i32 %X, 2 ; <i1> [#uses=1]
%2 = icmp eq i32 %X, 7 ; <i1> [#uses=1]
%R = or i1 %1, %2 ; <i1> [#uses=1]
ret i1 %R
}
This generalizes the previous xforms when the array is larger than
64 elements (and this case matches) and generates better code for
cases where it overlaps with the magic bitshift case.
This generalizes more cases than you might expect. For example,
400.perlbmk has:
@PL_utf8skip = constant [256 x i8] c"\01\01\01\...
%15 = icmp ult i8 %7, 7
403.gcc has:
@rid_to_yy = internal constant [114 x i16] [i16 259, i16 260, ...
%18 = icmp eq i16 %16, 295
and xalancbmk has a bunch of examples, such as
_ZN11xercesc_2_5L15gCombiningCharsE and _ZN11xercesc_2_5L10gBaseCharsE.
llvm-svn: 92417
arrays with variable indices into a comparison of the index
with a constant. The most common occurrence of this that
I see by far is stuff like:
if ("foobar"[i] == '\0') ...
which we compile into: if (i == 6), saving a load and
materialization of the global address. This also exposes
loop trip count information to later passes in many cases.
This triggers hundreds of times in xalancbmk, which is where I first
noticed it, but it also triggers in many other apps. Here are a few
interesting ones from various apps:
@must_be_connected_without = internal constant [8 x i8*] [i8* getelementptr inbounds ([3 x i8]* @.str64320, i64 0, i64 0), i8* getelementptr inbounds ([3 x i8]* @.str27283, i64 0, i64 0), i8* getelementptr inbounds ([4 x i8]* @.str71327, i64 0, i64 0), i8* getelementptr inbounds ([4 x i8]* @.str72328, i64 0, i64 0), i8* getelementptr inbounds ([3 x i8]* @.str18274, i64 0, i64 0), i8* getelementptr inbounds ([6 x i8]* @.str11267, i64 0, i64 0), i8* getelementptr inbounds ([3 x i8]* @.str32288, i64 0, i64 0), i8* null], align 32 ; <[8 x i8*]*> [#uses=2]
%scevgep.i = getelementptr [8 x i8*]* @must_be_connected_without, i64 0, i64 %indvar.i ; <i8**> [#uses=1]
%17 = load ...
%18 = icmp eq i8* %17, null ; <i1> [#uses=1]
-> icmp eq i64 %indvar.i, 7
@yytable1095 = internal constant [84 x i8] c"\12\01(\05\06\07\08\09\0A\0B\0C\0D\0E1\0F\10\11266\1D: \10\11,-,0\03'\10\11B6\04\17&\18\1945\05\06\07\08\09\0A\0B\0C\0D\0E\1E\0F\10\11*\1A\1B\1C$3+>#%;<IJ=ADFEGH9KL\00\00\00C", align 32 ; <[84 x i8]*> [#uses=2]
%57 = getelementptr inbounds [84 x i8]* @yytable1095, i64 0, i64 %56 ; <i8*> [#uses=1]
%mode.0.in = getelementptr inbounds [9 x i32]* @mb_mode_table, i64 0, i64 %.pn ; <i32*> [#uses=1]
load ...
%64 = icmp eq i8 %58, 4 ; <i1> [#uses=1]
-> icmp eq i64 %.pn, 35 ; <i1> [#uses=0]
@gsm_DLB = internal constant [4 x i16] [i16 6554, i16 16384, i16 26214, i16 32767]
%scevgep.i = getelementptr [4 x i16]* @gsm_DLB, i64 0, i64 %indvar.i ; <i16*> [#uses=1]
%425 = load %scevgep.i
%426 = icmp eq i16 %425, -32768 ; <i1> [#uses=0]
-> false
llvm-svn: 92411
pointer to int casts that confuse later optimizations. See PR3351
for details.
This improves but doesn't complete fix 483.xalancbmk because llvm-gcc
does this xform in GCC's "fold" routine as well. Clang++ will do
better I guess.
llvm-svn: 92408
(X != null) | (Y != null) --> (X|Y) != 0
(X == null) & (Y == null) --> (X|Y) == 0
so that instcombine can stop doing this for pointers. This is part of PR3351,
which is a case where instcombine doing this for pointers (inserting ptrtoint)
is pessimizing code.
llvm-svn: 92406
multiply sequence when the power is a constant integer. Before, our
codegen for std::pow(.., int) always turned into a libcall, which was
really inefficient.
This should also make many gfortran programs happier I'd imagine.
llvm-svn: 92388
positive and negative forms of constants together. This
allows us to compile:
int foo(int x, int y) {
return (x-y) + (x-y) + (x-y);
}
into:
_foo: ## @foo
subl %esi, %edi
leal (%rdi,%rdi,2), %eax
ret
instead of (where the 3 and -3 were not factored):
_foo:
imull $-3, 8(%esp), %ecx
imull $3, 4(%esp), %eax
addl %ecx, %eax
ret
this started out as:
movl 12(%ebp), %ecx
imull $3, 8(%ebp), %eax
subl %ecx, %eax
subl %ecx, %eax
subl %ecx, %eax
ret
This comes from PR5359.
llvm-svn: 92381