This reverts commit r266503, in case it's the root cause of this bot
failure:
http://lab.llvm.org:8011/builders/lld-x86_64-freebsd/builds/16810
I'm also reverting r266505 -- "ValueMapper: Use API from r266503 in unit
tests, NFC" -- since it's in the way.
llvm-svn: 266507
Eliminate co-recursion of Mapper::mapValue through
ValueMaterializer::materializeInitFor, through a major redesign of the
ValueMapper.cpp interface.
- Expose a ValueMapper class that controls the entry points to the
mapping algorithms.
- Change IRLinker to use ValueMapper directly, rather than
llvm::RemapInstruction, llvm::MapValue, etc.
- Use (e.g.) ValueMapper::scheduleMapGlobalInit to add mapping work to
a worklist in ValueMapper instead of recursing.
There were two fairly major complications.
Firstly, IRLinker::linkAppendingVarProto incorporates an on-the-fly IR
ugprade that I had to split apart. Long-term, this upgrade should be
done in the bitcode reader (and we should only accept the "new" form),
but for now I've just made it work and added a FIXME. The hold-op is
that we need to deprecate C API that relies on this.
Secondly, IRLinker has special logic to correctly implement aliases with
comdats, and uses two ValueToValueMapTy instances and two
ValueMaterializers. I supported this by allowing clients to register an
alternate mapping context, whose MCID can be passed in when scheduling
new work.
While out of scope for this commit, it should now be straightforward to
remove recursion from Mapper::mapValue.
llvm-svn: 266503
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Strip out the remapping parts of IRLinker::linkFunctionBody and put them
in ValueMapper.cpp under the name Mapper::remapFunction (with a
top-level entry-point llvm::RemapFunction).
This is a nice cleanup on its own since it puts the remapping code
together and shares a single Mapper context for the entire
IRLinker::linkFunctionBody Call. Besides that, this will make it easier
to break the co-recursion between IRMover.cpp and ValueMapper.cpp in
follow ups.
llvm-svn: 265835
This is a cleanup after clarifying the meaning of RF_IgnoreMissingLocals
in r265628 and truly limiting it to locals in r265768.
This should have no functionality change, since the only context that
the flag has an effect is when we could hit function-local Value and
Metadata, and we were already passing it in those contexts.
llvm-svn: 265831
Clarify what this RemapFlag actually means.
- Change the flag name to match its intended behaviour.
- Clearly document that it's not supposed to affect globals.
- Add a host of FIXMEs to indicate how to fix the behaviour to match
the intent of the flag.
RF_IgnoreMissingLocals should only affect the behaviour of
RemapInstruction for function-local operands; namely, for operands of
type Argument, Instruction, and BasicBlock. Currently, it is *only*
passed into RemapInstruction calls (and the transitive MapValue calls
that it makes).
When I split Metadata from Value I didn't understand the flag, and I
used it in a bunch of places for "global" metadata.
This commit doesn't have any functionality change, but prepares to
cleanup MapMetadata and MapValue.
llvm-svn: 265628
Instead of copying arguments from the source function to the
destination, steal them. This has a few advantages.
- The ValueMap doesn't need to be seeded with (or cleared of)
Arguments.
- Often the destination function won't have created any arguments yet,
so this avoids malloc traffic.
- Argument names don't need to be copied.
Because argument lists are lazy, this required a new
Function::stealArgumentListFrom helper.
llvm-svn: 265519
Split the loop through compile units in mapUnneededSubprograms in two.
First, visit imported entities to ensure that we've visited all need
subprograms. Second, visit subprograms, and drop the ones we don't
need.
Hypothetically this protects against a subprogram from one compile unit
being referenced from an imported entity in a different compile unit. I
don't think that's valid IR (a debug info expert could confirm), but I
think the refactor makes the code more clear.
llvm-svn: 265233
IRLinker::mapUnneededSubprograms has to be sure that any "needed"
subprograms get linked in. Rather than traversing through imported
entities using llvm::getSubprogram, call MapMetadata. The latter
memoizes the result in the ValueMap (sharing work with
IRLinker::linkNamedMDNodes proper), and makes the local SmallPtrSet
redundant.
llvm-svn: 265231
Instead of checking live during MapMetadata whether a subprogram is
needed, seed the ValueMap with `nullptr` up-front.
There is a small hypothetical functionality change. Previously, calling
MapMetadataOp on a node whose "scope:" chain led to an unneeded
subprogram would return nullptr. However, if that were ever called,
then the subprogram would be needed; a situation that the IRMover is
supposed to avoid a priori!
Besides cleaning up the code a little, this restores a nice property:
MapMetadataOp returns the same as MapMetadata.
llvm-svn: 265229
Support seeding a ValueMap with nullptr for Metadata entries, a
situation I didn't consider in the Metadata/Value split.
I added a ValueMapper::getMappedMD accessor that returns an
Optional<Metadata*> with the mapped (possibly null) metadata. IRMover
needs to use this to avoid modifying the map when it's checking for
unneeded subprograms. I updated a call from bugpoint since I find the
new code clearer.
llvm-svn: 265228
Since we have moved to a model where functions are imported in bulk from
each source module after making summary-based importing decisions, there
is no longer a need to link metadata as a postpass, and all users have
been removed.
This essentially reverts r255909 and follow-on fixes.
llvm-svn: 264763
Summary:
Unless we plan to do later postpass metadata linking (ThinLTO special mode),
always invoke metadata materialization at the start of IRLinker::run().
This avoids the need for clients who use lazy metadata loading to
explicitly invoke materializeMetadata before the IRMover, which in
turn invokes IRLinker::run and needs materialized metadata for mapping.
Came up in the context of an LLD issue (D17982).
Reviewers: rafael
Subscribers: silvas, llvm-commits
Differential Revision: http://reviews.llvm.org/D17992
llvm-svn: 263143
The stripNullSubprograms function is very inefficient because
it walks all subprograms in all compile units in the dest module
any time a new module is linked in. For LTO in particular this will
get increasingly expensive as more modules are linked.
This patch improves the efficiency in several ways. The first is that
no scanning is necessary when there were no unneeded subprograms
identified in the first place. The second is that only the newly-linked
module's compile unit metadata should be examined.
Fixes PR26346.
llvm-svn: 259049
For metadata postpass linking, after importing all functions, we need
to recursively walk through any nodes reached via imported functions to
locate needed subprogram metadata. Some might only be reached indirectly
via the variable list for an inlined function.
llvm-svn: 258728
Fix the condition for when the new global takes over the name of
the existing one to be the negation of the condition for the new
global to get internal linkage.
llvm-svn: 258355
Function::copyAttributesFrom will copy the personality function, prefix
data and prolog data from the source function to the new function, and
is invoked when the IRMover copies the function prototype. This puts a
reference to a constant in the source module on a function in the dest
module, which causes an error when deleting the source module after
importing, since the personality function in the source module still has
uses (this would presumably also be an issue for the prologue and prefix
data). Remove the copies added to the dest copy when creating the new
prototype, as they are mapped properly when/if we link the function body.
llvm-svn: 257420
Follow-up to r257000: DIImportedEntity can reach a DISubprogram via
its entity, but also via its scope. Handle the latter case as well.
PR26037.
llvm-svn: 257019
It is illegal to have a null entity in a DIImportedEntity, so
we must link in a DISubprogram metadata node referenced by one,
even if the associated function is not linked in or inlined anywhere.
Fixes PR26037.
llvm-svn: 257000
As suggested in review for r255909, rename MDMaterialized to AllowTemps,
and identify the name of the boolean flag being set in calls to
saveMetadataList.
llvm-svn: 256653
As suggested in review for r255909, add a way to ensure that temporary
MD used as keys in the MetadataToID map during ThinLTO importing are not
RAUWed.
Add support for marking an MDNode as not replaceable. Clear the new
CanReplace flag when adding a temporary MD node to the MetadataToID map
and clear it when destroying the map.
llvm-svn: 256648
Renamed variables to be more reflective of whether they are
an instance of Linker, IRLinker or ModuleLinker. Also fix a stale
comment.
llvm-svn: 256011
Summary:
Third patch split out from http://reviews.llvm.org/D14752.
Only map in needed DISubroutine metadata (imported or otherwise linked
in functions and other DISubroutine referenced by inlined instructions).
This is supported for ThinLTO, LTO and llvm-link --only-needed, with
associated tests for each one.
Depends on D14838.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D14843
llvm-svn: 256003
Summary:
Second patch split out from http://reviews.llvm.org/D14752.
Maps metadata as a post-pass from each module when importing complete,
suturing up final metadata to the temporary metadata left on the
imported instructions.
This entails saving the mapping from bitcode value id to temporary
metadata in the importing pass, and from bitcode value id to final
metadata during the metadata linking postpass.
Depends on D14825.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D14838
llvm-svn: 255909
This patch converts code that has access to a LLVMContext to not take a
diagnostic handler.
This has a few advantages
* It is easier to use a consistent diagnostic handler in a single program.
* Less clutter since we are not passing a handler around.
It does make it a bit awkward to implement some C APIs that return a
diagnostic string. I will propose new versions of these APIs and
deprecate the current ones.
llvm-svn: 255571
A linker normally has two stages: symbol resolution and "moving stuff".
In lib/Linker there is the complication of lazy linking some globals,
but it was still far more mixed than it needed to.
This splits the linker into a lower level IRMover and the linker proper.
The IRMover just takes a list of globals to move and a callback that
lets the user control what is lazy linked.
The main motivation is that now tools/gold (and soon lld) can use their
own symbol resolution to instruct IRMover what to do.
llvm-svn: 255254