The VDUP instruction source register doesn't allow a non-constant lane
index, so make sure we don't construct a ARM::VDUPLANE node asking it to
do so.
rdar://13328063
http://llvm.org/bugs/show_bug.cgi?id=13963
llvm-svn: 176413
dispatch code. As far as I can tell the thumb2 code is behaving as expected.
I was able to compile and run the associated test case for both arm and thumb1.
rdar://13066352
llvm-svn: 176363
Lower reverse shuffles to a vrev64 and a vext instruction instead of the default
legalization of storing and loading to the stack. This is important because we
generate reverse shuffles in the loop vectorizer when we reverse store to an
array.
uint8_t Arr[N];
for (i = 0; i < N; ++i)
Arr[N - i - 1] = ...
radar://13171760
llvm-svn: 174929
The ARM and Thumb variants of LDREXD and STREXD have different constraints and
take different operands. Previously the code expanding atomic operations didn't
take this into account and asserted in Thumb mode.
llvm-svn: 173780
conditions are met:
1. They share the same operand and are in the same BB.
2. Both outputs are used.
3. The target has a native instruction that maps to ISD::FSINCOS node or
the target provides a sincos library call.
Implemented the generic optimization in sdisel and enabled it for
Mac OSX. Also added an additional optimization for x86_64 Mac OSX by
using an alternative entry point __sincos_stret which returns the two
results in xmm0 / xmm1.
rdar://13087969
PR13204
llvm-svn: 173755
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
Use the version that also takes an MF reference instead.
It would technically be possible to extract an MF reference from the MI
as MI->getParent()->getParent(), but that would not work for MIs that
are not inserted into any basic block.
Given the reasonably small number of places this constructor was used at
all, I preferred the compile time check to a run time assertion.
llvm-svn: 170588
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
llvm-svn: 170104
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
llvm-svn: 169959
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
llvm-svn: 169954
ScalarTargetTransformInfo::getIntImmCost() instead. "Legal" is a poorly defined
term for something like integer immediate materialization. It is always possible
to materialize an integer immediate. Whether to use it for memcpy expansion is
more a "cost" conceern.
llvm-svn: 169929
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
llvm-svn: 169837
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
llvm-svn: 169791
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
llvm-svn: 169536
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Codegen was failing with an assertion because of unexpected vector
operands when legalizing the selection DAG for a MUL instruction.
The asserting code was legalizing multiplies for vectors of size 128
bits. It uses a custom lowering to try and detect cases where it can
use a VMULL instruction instead of a VMOVL + VMUL. The code was
looking for input operands to the MUL that had been sign or zero
extended. If it found the extended operands it would drop the
sign/zero extension and use the original vector size as input to a
VMULL instruction.
The code assumed that the original input vector was 64 bits so that
after dropping the extension it would fit directly into a D register
and could be used as an operand of a VMULL instruction. The input
code that trigger the failure used a vector of <4 x i8> that was
sign extended to <4 x i32>. It was not safe to drop the sign
extension in this case because the original vector is only 32 bits
wide. The fix is to insert a sign extension for the vector to reach
the required 64 bit size. In this particular example, the vector would
need to be sign extented to a <4 x i16>.
llvm-svn: 169024
This patch replaces the hard coded GPR pair [R0, R1] of
Intrinsic:arm_ldrexd and [R2, R3] of Intrinsic:arm_strexd with
even/odd GPRPair reg class.
Similar to the lowering of atomic_64 operation.
llvm-svn: 168207
mov lr, pc
b.w _foo
The "mov" instruction doesn't set bit zero to one, it's putting incorrect
value in lr. It messes up backtraces.
rdar://12663632
llvm-svn: 167657
registers. Previously, the register we being marked as implicitly defined, but
not killed. In some cases this would cause the register scavenger to spill a
dead register.
Also, use an empty register mask to simplify the logic and to reduce the memory
footprint.
rdar://12592448
llvm-svn: 167499
Removed extra stack frame object for fixed byval arguments,
VarArgsStyleRegisters invocation was reworked due to some improper usage in
past. PR14099 also demonstrates it.
llvm-svn: 166273
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
llvm-svn: 166018
local frame causes problem.
For example:
void f(StructToPass s) {
g(&s, sizeof(s));
}
will cause problem with tail-call since part of s is passed via registers and
saved in f's local frame. When g tries to access s, part of s may be corrupted
since f's local frame is popped out before the tail-call.
The current fix is to disable tail-call if getVarArgsRegSaveSize is not 0 for
the caller. This is a conservative approach, if we can prove the address of
s or part of s is not taken and passed to g, it should be okay to perform
tail-call.
rdar://12442472
llvm-svn: 165853
The backend already pattern matches to form VBSL when it can. We may want to
teach it to use the vbsl intrinsics at some point to prevent machine licm from
mucking with this, but using the Expand is completely correct.
http://llvm.org/bugs/show_bug.cgi?id=13831http://llvm.org/bugs/show_bug.cgi?id=13961
Patch by Peter Couperus <peter.couperus@st.com>.
llvm-svn: 165845
SDNode for LDRB_POST_IMM is invalid: number of registers added to SDNode fewer
that described in .td.
7 ops is needed, but SDNode with only 6 is created.
In more details:
In ARMInstrInfo.td, in multiclass AI2_ldridx, in definition _POST_IMM, offset
operand is defined as am2offset_imm. am2offset_imm is complex parameter type,
and actually it consists from dummy register and imm itself. As I understood
trick with dummy reg was made for AsmParser. In ARMISelLowering.cpp, this dummy
register was not added to SDNode, and it cause crash in Peephole Optimizer pass.
The problem fixed by setting up additional dummy reg when emitting
LDRB_POST_IMM instruction.
llvm-svn: 165617
SchedulerDAGInstrs::buildSchedGraph ignores dependencies between FixedStack
objects and byval parameters. So loading byval parameters from stack may be
inserted *before* it will be stored, since these operations are treated as
independent.
Fix:
Currently ARMTargetLowering::LowerFormalArguments saves byval registers with
FixedStack MachinePointerInfo. To fix the problem we need to store byval
registers with MachinePointerInfo referenced to first the "byval" parameter.
Also commit adds two new fields to the InputArg structure: Function's argument
index and InputArg's part offset in bytes relative to the start position of
Function's argument. E.g.: If function's argument is 128 bit width and it was
splitted onto 32 bit regs, then we got 4 InputArg structs with same arg index,
but different offset values.
llvm-svn: 165616
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
aligned address. Based on patch by David Peixotto.
Also use vld1.64 / vst1.64 with 128-bit alignment to take advantage of alignment
hints. rdar://12090772, rdar://12238782
llvm-svn: 164089
If we have a BUILD_VECTOR that is mostly a constant splat, it is often better to splat that constant then insertelement the non-constant lanes instead of insertelementing every lane from an undef base.
llvm-svn: 163304
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 163136
Add these transformations to the existing add/sub ones:
(and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
(or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
(xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
The selects can then be transformed to a single predicated instruction
by peephole.
This transformation will make it possible to eliminate the ISD::CAND,
COR, and CXOR custom DAG nodes.
llvm-svn: 162176
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
llvm-svn: 161994
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 161581
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
llvm-svn: 161232
This patch will optimize abs(x-y)
FROM
sub, movs, rsbmi
TO
subs, rsbmi
For abs, we will use cmp instead of movs. This is necessary because we already
have an existing peephole pass which optimizes away cmp following sub.
rdar: 11633193
llvm-svn: 158551
We turned off the CMN instruction because it had semantics which we weren't
getting correct. If we are comparing with an immediate, then it's okay to use
the CMN instruction.
<rdar://problem/7569620>
llvm-svn: 158302