All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
In addition to the original commit, tighten the condition for when to
pad empty functions to COFF Windows. This avoids running into problems
when targeting e.g. Win32 AMDGPU, which caused test failures when this
was committed initially.
llvm-svn: 301047
Empty functions can lead to duplicate entries in the Guard CF Function
Table of a binary due to multiple functions sharing the same RVA,
causing the kernel to refuse to load that binary.
We had a terrific bug due to this in Chromium.
It turns out we were already doing this for Mach-O in certain
situations. This patch expands the code for that in
AsmPrinter::EmitFunctionBody() and renames
TargetInstrInfo::getNoopForMachoTarget() to simply getNoop() since it
seems it was used for not just Mach-O anyway.
Differential Revision: https://reviews.llvm.org/D32330
llvm-svn: 301040
Hunt down some of the places where we use bare addReg(0) or addImm(AL).addReg(0)
and replace with add(condCodeOp()) and add(predOps()). This should make it
easier to understand what those operands represent (without having to look at
the definition of the instruction that we're adding to).
Differential Revision: https://reviews.llvm.org/D27984
llvm-svn: 292587
Replace all uses of AddDefaultCC with add(condCodeOp()).
The transformation has been done automatically with a custom tool based on Clang
AST Matchers + RefactoringTool.
Differential Revision: https://reviews.llvm.org/D28557
llvm-svn: 291893
Replace all uses of AddDefaultPred with MachineInstrBuilder::add(predOps()).
This makes the code building MachineInstrs more readable, because it allows us
to write code like:
MIB.addSomeOperand(blah)
.add(predOps())
.addAnotherOperand(blahblah)
instead of
AddDefaultPred(MIB.addSomeOperand(blah))
.addAnotherOperand(blahblah)
This commit also adds the predOps helper in the ARM backend, as well as the add
method taking a variable number of operands to the MachineInstrBuilder.
The transformation has been done mostly automatically with a custom tool based
on Clang AST Matchers + RefactoringTool.
Differential Revision: https://reviews.llvm.org/D28555
llvm-svn: 291890
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
ReplaceTailWithBranchTo assumed that if an instruction is predicated, it must be part of an IT block. This is not correct for conditional branches.
No testcase as this was triggered by the reverted patch r272017 - test coverage will occur when that patch is re-reverted and there is no known way to trigger this in the meantime.
llvm-svn: 272258
Physregs have no associated register class, do not attempt to modify it
in Thumb2InstrInfo::storeRegToStackSlot()/loadFromStackSlot().
llvm-svn: 271339
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
temporary.
Because of that:
1. The machine verifier was complaining on such code.
2. The generate code worked just because the thumb reduction size pass fixed the
opcode.
rdar://problem/20749824
llvm-svn: 236247
This is a follow up to r230233 to fix something that I noticed by
inspection. The AddrModeT2_i8s4 addressing mode does not support
negative offsets. I spent a good chunk of the day trying to come up with
a testcase for this but was not successful. This addressing mode is used
to spill and restore GPRPair registers in Thumb2 code and that does not
happen often. We also make very limited used of negative offsets when
lowering frame indexes. I am going ahead with the change anyway, because
I am pretty confident that it is correct. I also added a missing assertion
to check that the low bits of the scaled offset are zero.
llvm-svn: 230297
The natural way to handle this addressing mode would be to say that it has
8 bits and gets scaled by 4, but since the MC layer is expecting the scaling
to be already reflected in the immediate value, we have been setting the
Scale to 1. That's fine, but then NumBits needs to be adjusted to reflect
the effective increase in the range of the immediate. That adjustment was
missing.
The consequence is that the register scavenger can fail.
The estimateRSStackSizeLimit() function in ARMFrameLowering.cpp correctly
assumes that the AddrModeT2_i8s4 address mode can handle scaled offsets up to
1020. Under just the right circumstances, we fail to reserve space for the
scavenger because it thinks that nothing will be needed. However, the overly
pessimistic behavior in rewriteT2FrameIndex causes some frame indexes to be
out of range and require scavenged registers, and so the scavenger asserts.
Unfortunately I have not been able to come up with a testcase for this. I
can only reproduce it on an internal branch where the frame layout and
register allocation is slightly different than trunk. We really need a
way to serialize MachineInstr-level IR to write reasonable tests for things
like this.
rdar://problem/19909005
llvm-svn: 230233
expanding pseudo LOAD_STATCK_GUARD using instructions that are normally used
in pic mode. This patch fixes the bug.
<rdar://problem/17886592>
llvm-svn: 214614
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
ResolveFrameIndex had what appeared to be a very nasty hack for when the
frame-index referred to a callee-saved register. In this case it "adjusted" the
offset so that the address was correct if (and only if) the MachineInstr
immediately followed the respective push.
This "worked" for all forms of GPR & DPR but was only ever used to set the
frame pointer itself, and once this was put in a more sensible location the
entire state-tracking machinery it relied on became redundant. So I stripped
it.
The only wrinkle is that "add r7, sp, #0" might theoretically be slower (need
an actual ALU slot) compared to "mov r7, sp" so I added a micro-optimisation
that also makes emitARMRegUpdate and emitT2RegUpdate also work when NumBytes ==
0.
No test changes since there shouldn't be any functionality change.
llvm-svn: 194025
Solution is not sufficient to prevent 'mov pc, lr' being emitted for jump table code.
Test case doesn't trigger the added functionality.
llvm-svn: 190047
This improves code generation for jump tables by avoiding the emission of "mov pc, lr" which could fool the processor into believing this is a return from a function causing mispredicts. The code generation logic for jump tables uses ADR to materialize the address of the jump target.
Patch by Daniel Stewart!
llvm-svn: 190043
Use the version that also takes an MF reference instead.
It would technically be possible to extract an MF reference from the MI
as MI->getParent()->getParent(), but that would not work for MIs that
are not inserted into any basic block.
Given the reasonably small number of places this constructor was used at
all, I preferred the compile time check to a run time assertion.
llvm-svn: 170588
It never does anything when running 'make check', and it get's in the
way of updating live intervals in 2-addr.
The hook was originally added to help form IT blocks in Thumb2 code
before register allocation, but the pass ordering has changed since
then, and we run if-conversion after register allocation now.
When the MI scheduler is enabled, there will be no less than two
schedulers between 2-addr and Thumb2ITBlockPass, so this hook is
unlikely to help anything.
llvm-svn: 161794
Without this hook, functions w/ a completely empty body (including no
epilogue) will cause an MCEmitter assertion failure.
For example,
define internal fastcc void @empty_function() {
unreachable
}
rdar://10947471
llvm-svn: 151673
Add the predicate operand to the instructions. Update the back end
accordingly where the instructions are used. Restrict the SP operands
to actually only be SP, as otherwise these break assembly parsing for the
normal instruction variants.
llvm-svn: 138445
Merge the tMOVr, tMOVgpr2tgpr, tMOVtgpr2gpr, and tMOVgpr2gpr instructions
into tMOVr. There's no need to keep them separate. Giving the tMOVr
instruction the proper GPR register class for its operands is sufficient
to give the register allocator enough information to do the right thing
directly.
llvm-svn: 134204
Fix a FIXME and allow predication (in Thumb2) for the T1 register to
register MOV instructions. This allows some better codegen with
if-conversion (as seen in the test updates), plus it lays the groundwork
for pseudo-izing the tMOVCC instructions.
llvm-svn: 134197