turn icmp eq a+x, b+x into icmp eq a, b if a+x or b+x has other uses. This
may have been increasing register pressure leading to the bzip2 slowdown.
llvm-svn: 63487
improvements to the EvaluateInDifferentType code. This code works
by just inserted a bunch of new code and then seeing if it is
useful. Instcombine is not allowed to do this: it can only insert
new code if it is useful, and only when it is converging to a more
canonical fixed point. Now that we iterate when DCE makes progress,
this causes an infinite loop when the code ends up not being used.
llvm-svn: 63483
simplifydemandedbits to simplify instructions with *multiple
uses* in contexts where it can get away with it. This allows
it to simplify the code in multi-use-or.ll into a single 'add
double'.
This change is particularly interesting because it will cover
up for some common codegen bugs with large integers created due
to the recent SROA patch. When working on fixing those bugs,
this should be disabled.
llvm-svn: 63481
Now, if it detects that "V" is the same as some other value,
SimplifyDemandedBits returns the new value instead of RAUW'ing it immediately.
This has two benefits:
1) simpler code in the recursive SimplifyDemandedBits routine.
2) it allows future fun stuff in instcombine where an operation has multiple
uses and can be simplified in one context, but not all.
#2 isn't implemented yet, this patch should have no functionality change.
llvm-svn: 63479
be able to handle *ANY* alloca that is poked by loads and stores of
bitcasts and GEPs with constant offsets. Before the code had a number
of annoying limitations and caused it to miss cases such as storing into
holes in structs and complex casts (as in bitfield-sroa) where we had
unions of bitfields etc. This also handles a number of important cases
that are exposed due to the ABI lowering stuff we do to pass stuff by
value.
One case that is pretty great is that we compile
2006-11-07-InvalidArrayPromote.ll into:
define i32 @func(<4 x float> %v0, <4 x float> %v1) nounwind {
%tmp10 = call <4 x i32> @llvm.x86.sse2.cvttps2dq(<4 x float> %v1)
%tmp105 = bitcast <4 x i32> %tmp10 to i128
%tmp1056 = zext i128 %tmp105 to i256
%tmp.upgrd.43 = lshr i256 %tmp1056, 96
%tmp.upgrd.44 = trunc i256 %tmp.upgrd.43 to i32
ret i32 %tmp.upgrd.44
}
which turns into:
_func:
subl $28, %esp
cvttps2dq %xmm1, %xmm0
movaps %xmm0, (%esp)
movl 12(%esp), %eax
addl $28, %esp
ret
Which is pretty good code all things considering :).
One effect of this is that SROA will start generating arbitrary bitwidth
integers that are a multiple of 8 bits. In the case above, we got a
256 bit integer, but the codegen guys assure me that it can handle the
simple and/or/shift/zext stuff that we're doing on these operations.
This addresses rdar://6532315
llvm-svn: 63469
There is now a direct way from value-use-iterator to incoming block in PHINode's API.
This way we avoid the iterator->index->iterator trip, and especially the costly
getOperandNo() invocation. Additionally there is now an assertion that the iterator
really refers to one of the PHI's Uses.
llvm-svn: 62869
we assumed a CFG structure that would be valid when all code in
the function is reachable, but not all code is necessarily
reachable. Do a simple, but horrible, CFG walk to check for this
case.
llvm-svn: 62487
because of dead code, a phi could use the speculated instruction
that was not in "BB2". Make this check explicit and tighten up
some other corners. This fixes PR3292. No testcase becauase this
depends entirely on visitation order of blocks and requires a
sequence of 8 passes to repro.
llvm-svn: 62476
doing very similar pointer capture analysis.
Factor out the common logic. The new version
is from FunctionAttrs since it does a better
job than the version in BasicAliasAnalysis
llvm-svn: 62461
putc, puts, perror, vscanf and vsscanf from getting annotations.
Add annotations for eight printf functions, memalign, pread and pwrite.
On Linux, llvm-gcc sometimes renames strdup, getc, putc, strtok_r, scanf and
sscanf. Match the alternate function names.
Fix a crash annotating opendir.
Don't mark fsetpos's second parameter as nocapture. It's supposed to be
captured.
Do mark fopen's path and mode strings as nocapture. Mark ferror as readonly,
but not fileno which may set errno.
llvm-svn: 62456
- Looking at the number of sign bits of the a sext instruction to determine whether new trunc + sext pair should be added when its source is being evaluated in a different type.
llvm-svn: 62263
my earlier patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
Also, when we build an expression that involves a (possibly
non-affine) IV from a different loop as well as an IV from
the one we're interested in (containsAddRecFromDifferentLoop),
don't recurse into that. We can't do much with it and will
get in trouble if we try to create new non-affine IVs or something.
More testcases are coming.
llvm-svn: 62212
vector and extraneous loop over it, 2) not delete globals used by
phis/selects etc which could actually be useful. This fixes PR3321.
Many thanks to Duncan for narrowing this down.
llvm-svn: 62201
compensation for turning off gcc's inliner. This gets
us closer to the amount of inlining we were getting before.
It is not a win on everything, of course, but seems to
gain overall.
llvm-svn: 62058
canonicalization transform based on duncan's comments:
1) improve the comment about %.
2) within our index loop make sure the offset stays
within the *type size*, instead of within the *abi size*.
This allows us to reason explicitly about landing in tail
padding and means that issues like non-zero offsets into
[0 x foo] types don't occur anymore.
llvm-svn: 62045
functions that don't already have a (dynamic) alloca.
Dynamic allocas cause inefficient codegen and we shouldn't
propagate this (behavior follows gcc). Two existing tests
assumed such inlining would be done; they are hacked by
adding an alloca in the caller, preserving the point of
the tests.
llvm-svn: 61946
loads from allocas that cover the entire aggregate. This handles
some memcpy/byval cases that are produced by llvm-gcc. This triggers
a few times in kc++ (with std::pair<std::_Rb_tree_const_iterator
<kc::impl_abstract_phylum*>,bool>) and once in 176.gcc (with %struct..0anon).
llvm-svn: 61915
was it not very helpful, it was also wrong! The problem
is shown in the testcase: the alloca might be passed to
a nocapture callee which dereferences it and returns the
original pointer. But because it was a nocapture call we
think we don't need to track its uses, but we do.
llvm-svn: 61876
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
In fact this also deletes those with linkonce linkage,
however this is currently dead because for the moment
aliases aren't allowed to have this linkage type.
llvm-svn: 61742
Finalization occurs after all the FunctionPasses in the group have run, which
is clearly not what we want.
This also means that we have to make sure that we apply the right param
attributes when creating a new function.
Also, add a missed optimization: strdup and strndup. NoCapture and
NoAlias return!
llvm-svn: 61658
not have pointer type. In particular, it may
be the condition argument for a select or a GEP
index. While I was unable to construct a testcase
for which some bits of the original pointer are
captured due to one of these, it's very very close
to being possible - so play safe and exclude these
possibilities.
llvm-svn: 61580
the argument to be stored to an alloca by tracking uses
of the alloca. This occurs 4 times (out of 7121, 0.05%)
in MultiSource/Applications, so may not be worth it. On
the other hand, it is easy to do and fairly cheap. The
functions it helps are: W_addcom and W_addlit in spiff;
process_args (argv) in d (make_dparser); ercPixConcealIMB
in JM/ldecod.
llvm-svn: 61570
functions that don't write can't leak a pointer except through
the return value, so a void readonly function is implicitly nocapture.
Test these, and add a test that verifies that f1 calling f2 with an
otherwise dead pointer gets both of them marked nocapture.
llvm-svn: 61552
to work out (in a very simplistic way) which function
arguments (pointer arguments only) are only dereferenced
and so do not escape. Mark such arguments 'nocapture'.
llvm-svn: 61525
and select instructions doesn't buy anything here
except extra complexity: the only difference in
the entire testsuite was that a readonly function
became readnone in MiBench/consumer-typeset. Add
a comment about this.
llvm-svn: 61478
constants, since doing so is irrelevant for aliasing
purposes. While this doesn't increase the total number
of functions marked readonly or readnone in MultiSource/
Applications (3089), it does result in 12 functions being
marked readnone rather than readonly.
Before:
readnone: 820
readonly: 2269
After:
readnone: 832
readonly: 2257
llvm-svn: 61469
my last patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
I owe some testcases for this, want to get it in for nightly runs.
llvm-svn: 61362
- Use SplitBlockPredecessors to factor out common predecessors of the critical edge destination. This is disabled for now due to some regressions.
llvm-svn: 61248
my last patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. (This patch does not handle
all the cases where this can happen.) And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Everything above is exercised in
CodeGen/X86/lsr-negative-stride.ll (and ifcvt4 in ARM which is
the same IR).
llvm-svn: 61178
nodes. This allows it to do fairly general phi insertion if a
load from a pointer global wants to be SRAd but the load is used
by (recursive) phi nodes. This fixes a pessimization on ppc
introduced by Load PRE.
llvm-svn: 61123
consistently for deleting branches. In addition to being slightly
more readable, this makes SimplifyCFG a bit better
about cleaning up after itself when it makes conditions unused.
llvm-svn: 61100
CFG when there is exactly one predecessor where the load is not available.
This is designed to not increase code size but still eliminate partially
redundant loads. This fires 1765 times on 403.gcc even though it doesn't
do critical edge splitting yet (the most common reason for it to fail).
llvm-svn: 61027
cleans up the generated code a bit. This should have the added benefit of
not randomly renaming functions/globals like my previous patch did. :)
llvm-svn: 61023