This reverts commit r313722.
It looks like compiler-rt/lib/tsan/rtl/tsan_libdispatch_mac.cc cannot be
compiled because some of the functions declared in the file do not match
the ones in the SDK headers (which are annotated with 'noescape').
llvm-svn: 313725
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313722
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32520
llvm-svn: 313720
Specifically, typo correction should be done before dispatching between
different kinds of binary operations like pseudo-object assignment,
overloaded binary operation, etc.
Without this change we hit an assertion
Assertion failed: (!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)), function CheckAssignmentOperands
when in Objective-C we reference a property without `self` and there are
2 equally good typo correction candidates: ivar and a class name. In
this case LHS expression in `BuildBinOp` is
CXXDependentScopeMemberExpr
`-TypoExpr
and instead of handling Obj-C property assignment as pseudo-object
assignment, we call `CreateBuiltinBinOp` which corrects typo to
ObjCPropertyRefExpr '<pseudo-object type>'
but cannot handle pseudo-objects and asserts about it (indirectly,
through `CheckAssignmentOperands`).
rdar://problem/33102722
Reviewers: rsmith, ahatanak, majnemer
Reviewed By: ahatanak
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D37322
llvm-svn: 313323
As discovered by ChenWJ and listed on cfe-dev, the error for Objective C
return type ended up being wrong. This fixes that. Additionally, as a
"while we're there", the other usages of this error and the usage of the
FP above both use a FixItHint, so I'll add it here.
Differential Revision: https://reviews.llvm.org/D32759
llvm-svn: 302720
In a previous patch, a new generic error diagnostic for inconsistent attributes was added.
In this commit I reuse this diagnostic for ns_returns_retained attribute check.
Differential Revision: https://reviews.llvm.org/D32697
llvm-svn: 302024
ObjC++ has two different types of "pointer" types (ObjCClassPointerType
and PointerType). Both can be indirected through. However, the former
is not a member expression. Ensure that we do not try to rebuild the
MRE in that case.
llvm-svn: 300909
checking its storage class, when determining whether casting a C pointer
to an ObjC pointer is allowed.
This change allows casting variables whose declarations are directly
contained in a linkage specification to an ObjC pointer type. Those
variables are treated as if they contain the extern specifier for the
purpose of determining whether they are definitions or not.
rdar://problem/29249853
Differential Revision: https://reviews.llvm.org/D31673
llvm-svn: 299992
object types should be preferred over conversions to other object pointers
This change ensures that Clang will select the correct overload for the
following code sample:
void overload(Base *b);
void overload(Derived *d);
void test(Base<Base *> b) {
overload(b); // Select overload(Base *), not overload(Derived *)
}
rdar://20124827
Differential Revision: https://reviews.llvm.org/D31597
llvm-svn: 299648
an ObjC object pointer
When ARC is enabled in Objective-C++, comparisons between a pointer and
Objective-C object pointer typically result in errors like this:
"invalid operands to a binary expression". This error message can be quite
confusing as it doesn't provide a solution to the problem, unlike the non-C++
diagnostic: "implicit conversion of Objective-C pointer type 'id' to C pointer
type 'void *' requires a bridged cast" (it also provides fix-its). This commit
forces comparisons between pointers and Objective-C object pointers in ARC to
use the Objective-C semantic rules to ensure that a better diagnostic is
reported.
rdar://31103857
Differential Revision: https://reviews.llvm.org/D31177
llvm-svn: 299080
Summary: After examining the remaining uses of LangOptions.ObjCAutoRefCount, found a some additional places to also check for ObjCWeak not covered by previous test cases. Added a test file to verify all the code paths that were changed.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31007
llvm-svn: 299015
Summary: clang should produce the same errors Objective-C classes that cannot be assigned to weak pointers under both -fobjc-arc and -fobjc-weak. Check for ObjCWeak along with ObjCAutoRefCount when analyzing pointer conversions. Add an -fobjc-weak pass to the existing arc-unavailable-for-weakref test cases to verify the behavior is the same.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31006
llvm-svn: 299014
Summary: Similar to ARC, in ObjCWeak Objective-C object pointers qualified with a weak lifetime are not POD or trivial types. Update the type trait code to reflect this. Copy and adapt the arc-type-traits.mm test case to verify correctness.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31004
llvm-svn: 299010
Printing typedefs or type aliases using clang_getTypeSpelling() is missing the
namespace they are defined in. This is in contrast to other types that always
yield the full typename including namespaces.
Patch by Michael Reiher!
Differential Revision: https://reviews.llvm.org/D29944
llvm-svn: 297465
potential capture list.
Fix Sema::getCurLambda() to return the innermost lambda scope when there
is a block enclosed in the lambda. Previously, the method would return a
nullptr in such cases, which would prevent a variable captured by the
enclosed block to be added to the lambda scope's potential capture list.
rdar://problem/28412462
Differential Revision: https://reviews.llvm.org/D25556
llvm-svn: 296584
r274291 made changes to prefer calling a move constructor to calling a
copy constructor when returning from a function. This caused programs to
crash when a __block variable in the heap was moved out and used later.
This commit fixes the bug by disallowing moving out of __block variables
implicitly.
rdar://problem/28181080
Differential Revision: https://reviews.llvm.org/D29908
llvm-svn: 295150
After r260016 and r260017 disabled typo correction for ivars and properties
clang didn't report errors about unresolved identifier in the base of ivar and
property ref expressions. This meant that clang invoked CodeGen on invalid AST
which then caused a crash.
This commit re-enables typo correction for ivars and properites, and fixes the
PR25113 & PR26486 (that were originally fixed in r260017 and r260016) in a
different manner by transforming the Objective-C ivar reference expression with
'IsFreeIvar' preserved.
rdar://30310772
llvm-svn: 294008
This is especially important for arrays, since no one knows the proper
syntax for putting qualifiers in arrays.
nullability.h:3:26: warning: array parameter is missing a nullability type specifier (_Nonnull, _Nullable, or _Null_unspecified)
void arrayParameter(int x[]);
^
nullability.h:3:26: note: insert '_Nullable' if the array parameter may be null
void arrayParameter(int x[]);
^
_Nullable
nullability.h:3:26: note: insert '_Nonnull' if the array parameter should never be null
void arrayParameter(int x[]);
^
_Nonnull
rdar://problem/29524992
llvm-svn: 290132
an Objective-C declaration
This commit ensures that Sema won't enter a C++ declarator scope when the
current context is an Objective-C declaration. This prevents an assertion
failure in EnterDeclaratorContext that's used to ensure that current context
will be restored correctly after exiting the declarator context.
rdar://20560175
Differential Revision: https://reviews.llvm.org/D26922
llvm-svn: 288893
There are many non-portable typedefs, but va_list is one that nobody
ever thinks of as a pointer or an array. (When's the last time you saw
someone check for a NULL va_list?) Make an exception for this one
special type.
Part of rdar://problem/25846421.
llvm-svn: 286522
...or within a reference. Both of these add an extra level of
indirection that make us less certain that the pointer really was
supposed to be non-nullable. However, changing the default behavior
would be a breaking change, so we'll just make it a warning instead.
Part of rdar://problem/25846421
llvm-svn: 286521
This is an addition to (and sub-warning of) -Wnullability-completeness
that warns when an array parameter is missing nullability. When the
specific warning is switched off, the compiler falls back to only
warning on pointer types written as pointer types.
Note that use of nullability /within/ an array triggers the
completeness checks regardless of whether or not the array-specific
warning is enabled; the intent there is simply to determine whether a
particular header is trying to be nullability-aware at all.
Part of rdar://problem/25846421.
llvm-svn: 286520
Previously the following code would warn on the use of "T":
template <typename T>
struct X {
typedef T *type;
};
...because nullability is /allowed/ on template parameters (because
they could be pointers). (Actually putting nullability on this use of
'T' will of course break if the argument is a non-pointer type.)
This fix doesn't handle the case where a template parameter is used
/outside/ of a typedef. That seems trickier, especially in parameter
position.
llvm-svn: 285856
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
This is a re-commit of r284800.
llvm-svn: 284890
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
llvm-svn: 284800
Extend the __declspec(dll*) attribute to cover ObjC interfaces. This was
requested by Microsoft for their ObjC support. Cover both import and export.
This only adds the semantic analysis portion of the support, code-generation
still remains outstanding. Add some basic initial documentation on the
attributes that were previously empty. Tweak the previous tests to use the
relative expected-warnings to make the tests easier to read.
llvm-svn: 275610
-Wfor-loop-analysis warnings for a for-loop with a condition variable. In such
a case, the loop condition variable is modified on each iteration of the loop
by definition.
Original commit message:
Rearrange condition handling so that semantic checks on a condition variable
are performed before the other substatements of the construct are parsed,
rather than deferring them until the end. This allows better error recovery
from semantic errors in the condition, improves diagnostic order, and is a
prerequisite for C++17 constexpr if.
llvm-svn: 273600
are performed before the other substatements of the construct are parsed,
rather than deferring them until the end. This allows better error recovery
from semantic errors in the condition, improves diagnostic order, and is a
prerequisite for C++17 constexpr if.
llvm-svn: 273548
BuildBlockForLambdaConversion.
Previously, clang would build an incorrect AST for the following code:
id test() {
return @{@"a": [](){}, @"b": [](){}};
}
ReturnStmt 0x10d080448
`-ExprWithCleanups 0x10d080428
|-cleanup Block 0x10d0801f0 // points to the second BlockDecl
...
-BlockDecl 0x10d07f150 // First block
...
-BlockDecl 0x10d0801f0 // Second block
...
`-ExprWithCleanups 0x10d0801d0
|-cleanup Block 0x10d07f150 // points to the first BlockDecl
To fix the bug, this commit enters a new evaluation context to reset
ExprNeedsCleanups before each block is parsed.
rdar://problem/16879958
Differential Revision: http://reviews.llvm.org/D18815
llvm-svn: 268527
Instantiation dependence were not being handled correctly for OpqaueValueExpr
AST nodes. As a result, if an undeclared identifier was used in a CXXNewExpr
that is assigned to a ObjC property, there would be no error during parsing, and
there would be a crash during code gen. This patch makes sure that an error
will be issued during parsing in this case.
Before the fix, if CXXNewExpr has a typo, its InstantiationDependent will be
set to true, but if it is wrapped in a OpaqueValueExpr, the OpaqueValueExpr will
not be instantiation dependent, causing the TypoExpr not be to resolved. The fix
propagates InstantiationDependent to OpaqueValueExpr from its SourceExpr. It
also propagates the other instantiation bits.
rdar://24975562
Differential Revision: http://reviews.llvm.org/D18461
llvm-svn: 264444
The assert isn't correct since TypeLoc::ObjCObjectTypeLoc doesn't
indicate whether the type is a dependent type. The function returns
false for a type like "<SomeProtocol>" which is a synonym for
"id<SomeProtocol>".
rdar://problem/23838912
Differential Revision: http://reviews.llvm.org/D17355
llvm-svn: 261829
The code in TypeLocBuilder::pushImpl wasn't correctly handling the case
where an element that has an 8-byte alignment was being pushed.
I plan to follow up with a patch to remove redundancies and simplify the
function.
rdar://problem/23838912
Differential Revision: http://reviews.llvm.org/D16843
llvm-svn: 261260
For ObjCXX, we can create a CastExpr with Kind being CK_UserDefinedConversion
and SubExpr being BlockExpr. Specifically one can return BlockExpr from
BuildCXXMemberCallExpr and the result can be used to build a CastExpr.
Fix the assumption in CastExpr::getSubExprAsWritten that SubExpr can only
be CXXMemberCallExpr.
rdar://problem/24364077
llvm-svn: 259591
This is the 5th Lit test patch.
Expanded expected diagnostics to vary by C++ dialect.
Expanded RUN line to: default, C++98/03 and C++11.
llvm-svn: 255196
The code used "isa" to check the type and then "getAs" to look through
sugar; we need to look through the sugar when checking, too, otherwise
any kind of sugar (nullability qualifiers in the example; or a
typedef) will thwart this semantic check. Fixes rdar://problem/23804250.
llvm-svn: 255066
A 'readonly' Objective-C property declared in the primary class can
effectively be shadowed by a 'readwrite' property declared within an
extension of that class, so long as the types and attributes of the
two property declarations are compatible.
Previously, this functionality was implemented by back-patching the
original 'readonly' property to make it 'readwrite', destroying source
information and causing some hideously redundant, incorrect
code. Simplify the implementation to express how this should actually
be modeled: as a separate property declaration in the extension that
shadows (via the name lookup rules) the declaration in the primary
class. While here, correct some broken Fix-Its, eliminate a pile of
redundant code, clean up the ARC migrator's handling of properties
declared in extensions, and fix debug info's naming of methods that
come from categories.
A wonderous side effect of doing this write is that it eliminates the
"AddedObjCPropertyInClassExtension" method from the AST mutation
listener, which in turn eliminates the last place where we rewrite
entire declarations in a chained PCH file or a module file. This
change (which fixes rdar://problem/18475765) will allow us to
eliminate the rewritten-decls logic from the serialization library,
and fixes a crash (rdar://problem/23247794) illustrated by the
test/PCH/chain-categories.m example.
llvm-svn: 251874
Fake arguments are automatically handled for serialization, cloning,
and other representational tasks, but aren't included in pretty-printing
or parsing (should we eventually ever automate that).
This is chiefly useful for attributes that can be written by the
user, but which are also frequently synthesized by the compiler,
and which we'd like to remember details of the synthesis for.
As a simple example, use this to narrow the cases in which we were
generating a specialized note for implicitly unavailable declarations.
llvm-svn: 251469
allow them to be written in certain kinds of user declaration and
diagnose on the use-site instead.
Also, improve and fix some diagnostics relating to __weak and
properties.
rdar://23228631
llvm-svn: 251384
The inference of _Nullable for weak Objective-C properties was broken
in several ways:
* It was back-patching the type information very late in the process
of checking the attributes for an Objective-C property, which is
just wrong.
* It was using ad hoc checks to try to suppress the warning about
missing nullability specifiers (-Wnullability-completeness), which
didn't actual work in all cases (rdar://problem/22985457)
* It was inferring _Nullable even outside of assumes-nonnull regions,
which is wrong.
Putting the inference of _Nullable for weak Objective-C properties in
the same place as all of the other inference logic fixes all of these
ills.
llvm-svn: 249896
Objective-C ARC lifetime qualifiers are dropped when canonicalizing
function types. Perform the same adjustment before comparing the
deduced result types of lambdas. Fixes rdar://problem/22344904.
llvm-svn: 249065
silently ignore them on arguments when they're provided indirectly
(.e.g behind a template argument or typedef).
This is mostly just good language design --- specifying that a
generic argument is __weak doesn't actually do anything --- but
it also prevents assertions when trying to apply a different
ownership qualifier.
rdar://21612439
llvm-svn: 248436
The root cause here is that ObjCSelectorExpr is an rvalue, yet it can have its
address taken. That's kind of awkward, but fixing this is awkward in other
ways, see https://llvm.org/bugs/show_bug.cgi?id=24774#c16 . For now, just
fix the crash.
llvm-svn: 247740
We referred to all declaration in definitions in our diagnostic messages
which is can be inaccurate. Instead, classify the declaration and emit
an appropriate diagnostic for the new declaration and an appropriate
note pointing to the old one.
This fixes PR24116.
llvm-svn: 242190
Introduce co- and contra-variance for Objective-C type parameters,
which allows us to express that (for example) an NSArray is covariant
in its type parameter. This means that NSArray<NSMutableString *> * is
a subtype of NSArray<NSString *> *, which is expected of the immutable
Foundation collections.
Type parameters can be annotated with __covariant or __contravariant
to make them co- or contra-variant, respectively. This feature can be
detected by __has_feature(objc_generics_variance). Implements
rdar://problem/20217490.
llvm-svn: 241549
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
Teach C++'s tentative parsing to handle specializations of Objective-C
class types (e.g., NSArray<NSString *>) as well as Objective-C
protocol qualifiers (id<NSCopying>) by extending type-annotation
tokens to handle this case. As part of this, remove Objective-C
protocol qualifiers from the declaration specifiers, which never
really made sense: instead, provide Sema entry points to make them
part of the type annotation token. Among other things, this properly
diagnoses bogus types such as "<NSCopying> id" which should have been
written as "id <NSCopying>".
Implements template instantiation support for, e.g., NSArray<T>*
in C++. Note that parameterized classes are not templates in the C++
sense, so that cannot (for example) be used as a template argument for
a template template parameter. Part of rdar://problem/6294649.
llvm-svn: 241545
When messaging a method that was defined in an Objective-C class (or
category or extension thereof) that has type parameters, substitute
the type arguments for those type parameters. Similarly, substitute
into property accesses, instance variables, and other references.
This includes general infrastructure for substituting the type
arguments associated with an ObjCObject(Pointer)Type into a type
referenced within a particular context, handling all of the
substitutions required to deal with (e.g.) inheritance involving
parameterized classes. In cases where no type arguments are available
(e.g., because we're messaging via some unspecialized type, id, etc.),
we substitute in the type bounds for the type parameters instead.
Example:
@interface NSSet<T : id<NSCopying>> : NSObject <NSCopying>
- (T)firstObject;
@end
void f(NSSet<NSString *> *stringSet, NSSet *anySet) {
[stringSet firstObject]; // produces NSString*
[anySet firstObject]; // produces id<NSCopying> (the bound)
}
When substituting for the type parameters given an unspecialized
context (i.e., no specific type arguments were given), substituting
the type bounds unconditionally produces type signatures that are too
strong compared to the pre-generics signatures. Instead, use the
following rule:
- In covariant positions, such as method return types, replace type
parameters with “id” or “Class” (the latter only when the type
parameter bound is “Class” or qualified class, e.g,
“Class<NSCopying>”)
- In other positions (e.g., parameter types), replace type
parameters with their type bounds.
- When a specialized Objective-C object or object pointer type
contains a type parameter in its type arguments (e.g.,
NSArray<T>*, but not NSArray<NSString *> *), replace the entire
object/object pointer type with its unspecialized version (e.g.,
NSArray *).
llvm-svn: 241543
Objective-C type arguments can be provided in angle brackets following
an Objective-C interface type. Syntactically, this is the same
position as one would provide protocol qualifiers (e.g.,
id<NSCopying>), so parse both together and let Sema sort out the
ambiguous cases. This applies both when parsing types and when parsing
the superclass of an Objective-C class, which can now be a specialized
type (e.g., NSMutableArray<T> inherits from NSArray<T>).
Check Objective-C type arguments against the type parameters of the
corresponding class. Verify the length of the type argument list and
that each type argument satisfies the corresponding bound.
Specializations of parameterized Objective-C classes are represented
in the type system as distinct types. Both specialized types (e.g.,
NSArray<NSString *> *) and unspecialized types (NSArray *) are
represented, separately.
llvm-svn: 241542
Addresses a conflict with glibc's __nonnull macro by renaming the type
nullability qualifiers as follows:
__nonnull -> _Nonnull
__nullable -> _Nullable
__null_unspecified -> _Null_unspecified
This is the major part of rdar://problem/21530726, but does not yet
provide the Darwin-specific behavior for the old names.
llvm-svn: 240596
That is,
void cf2(CFTypeRef * __nullable p CF_RETURNS_NOT_RETAINED);
is equivalent to
void cf2(CFTypeRef __nullable * __nullable p CF_RETURNS_NOT_RETAINED);
More rdar://problem/18742441
llvm-svn: 240186
Adds a new warning (under -Wnullability-completeness) that complains
about pointer, block pointer, or member pointer declarations that have
not been annotated with nullability information (directly or inferred)
within a header that contains some nullability annotations. This is
intended to be used to help maintain the completeness of nullability
information within a header that has already been audited.
Note that, for performance reasons, this warning will underrepresent
the number of non-annotated pointers in the case where more than one
pointer is seen before the first nullability type specifier, because
we're only tracking one piece of information per header. Part of
rdar://problem/18868820.
llvm-svn: 240158
Introduce the clang pragmas "assume_nonnull begin" and "assume_nonnull
end" in which we make default assumptions about the nullability of many
unannotated pointers:
- Single-level pointers are inferred to __nonnull
- NSError** in a (function or method) parameter list is inferred to
NSError * __nullable * __nullable.
- CFErrorRef * in a (function or method) parameter list is inferred
to CFErrorRef __nullable * __nullable.
- Other multi-level pointers are never inferred to anything.
Implements rdar://problem/19191042.
llvm-svn: 240156
Previously if an enumeration was used in a nested name specifier in pre-C++11
language dialect, error message was 'XXX is not a class, namespace, or scoped
enumeration'. This patch removes the word 'scoped' as in C++11 any enumeration
may be used in this context.
llvm-svn: 226410
This is a regression from clang 3.4
Set the result to ExprError and returns true, rather than simply
returns false because errors have been reported already and returning
false show a confusing error
llvm-svn: 214734
Rather than simply saying "X is not a class or namespace", clarify what
X is by providing the aka type in the case where X is a type, or
pointing to the named declaration if there's an unambiguous one to refer
to. In the ambiguous case, the ambiguities are already enumerated
(though could be clarified by describing what kind of entities they are)
Included a few FIXMEs in tests where some further improvements could be
made.
llvm-svn: 201038
This makes the C++ ABI depend entirely on the target: MS ABI for -win32 triples,
Itanium otherwise. It's no longer possible to do weird combinations.
To be able to run a test with a specific ABI without constraining it to a
specific triple, new substitutions are added to lit: %itanium_abi_triple and
%ms_abi_triple can be used to get the current target triple adjusted to the
desired ABI. For example, if the test suite is running with the i686-pc-win32
target, %itanium_abi_triple will expand to i686-pc-mingw32.
Differential Revision: http://llvm-reviews.chandlerc.com/D2545
llvm-svn: 199250
The ABI requires the destructor to be invoked in the callee, but the
standard does not require access checks here so we avoid doing direct
access checks on the destructor.
If we end up needing to define an implicit destructor, we don't skip
access checks for the base class, etc. Those checks are effectively part
of generating the destructor definition, and aren't affected by which TU
the check is performed in.
Differential Revision: http://llvm-reviews.chandlerc.com/D2409
llvm-svn: 199120
Fixes <rdar://problem/15584219> and <rdar://problem/12241361>.
This change looks large, but all it does is reuse and consolidate
the delayed diagnostic logic for deprecation warnings with unavailability
warnings. By doing so, it showed various inconsistencies between the
diagnostics, which were close, but not consistent. It also revealed
some missing "note:"'s in the deprecated diagnostics that were showing
up in the unavailable diagnostics, etc.
This change also changes the wording of the core deprecation diagnostics.
Instead of saying "function has been explicitly marked deprecated"
we now saw "'X' has been been explicitly marked deprecated". It
turns out providing a bit more context is useful, and often we
got the actual term wrong or it was not very precise
(e.g., "function" instead of "destructor"). By just saying the name
of the thing that is deprecated/deleted/unavailable we define
this issue away. This diagnostic can likely be further wordsmithed
to be shorter.
llvm-svn: 197627
of objc_bridge_related attribute; eliminate
unnecessary diagnostics which is issued elsewhere,
fixit now produces a valid AST tree per convention.
This results in some simplification in handling of
this attribute as well. // rdar://15499111
llvm-svn: 197436
attribute in sema and issuing a variety of diagnostics lazily
for misuse of this attribute (and what to do) when converting
from CF types to ObjectiveC types (and vice versa).
// rdar://15499111
llvm-svn: 196629
Under ARC++, a reference to a const Objective-C pointer is implicitly
treated as __unsafe_unretained, and can be initialized with (e.g.) a
__strong lvalue. Make sure this behavior does not break template
argument deduction and (related) that partial ordering still prefers a
'T* const&' template over a 'T const&' template when this case kicks
in. Fixes <rdar://problem/14467941>.
llvm-svn: 194239