Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
llvm-svn: 209512
This is mostly a mechanical change changing all the call sites to the newer
chained-function construction pattern. This removes the horrible 15-parameter
constructor for the CallLoweringInfo in favour of setting properties of the call
via chained functions. No functional change beyond the removal of the old
constructors are intended.
llvm-svn: 209082
This is a preliminary step to help ease the construction of CallLoweringInfo.
Changing the construction to a chained function pattern requires that the
parameter be nullable. However, rather than copying the vector, save a pointer
rather than the reference to permit a late binding of the arguments.
llvm-svn: 209080
r208453 added support for having sret on the second parameter. In that
change, the code for copying sret into a virtual register was hoisted
into the loop that lowers formal parameters. This caused a "Wrong
topological sorting" assertion failure during scheduling when a
parameter is passed in memory. This change undoes that by creating a
second loop that deals with sret.
I'm worried that this fix is incomplete. I don't fully understand the
dependence issues. However, with this change we produce the same DAGs
we used to produce, so if they are broken, they are just as broken as
they have always been.
llvm-svn: 208637
Summary:
DCL[ZO] are now correctly marked as being MIPS64 instructions. This has no
effect on the CodeGen tests since expansion of i64 prevented their use
anyway.
The check for MIPS16 to prevent the use of CLZ no longer prevents DCLZ as
well. This is not a functional change since DCLZ is still prohibited by
being a MIPS64 instruction (MIPS16 is only compatible with MIPS32).
No functional change
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3694
llvm-svn: 208544
Summary:
dsbh and dshd are not available on Mips32r2. No codegen test changes
required since expansion of i64 prevented the use of these instructions
anyway.
Depends on D3690
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3692
llvm-svn: 208542
MSVC always places the implicit sret parameter after the implicit this
parameter of instance methods. We used to handle this for
x86_thiscallcc by allocating the sret parameter on the stack and leaving
the this pointer in ecx, but that doesn't handle alternative calling
conventions like cdecl, stdcall, fastcall, or the win64 convention.
Instead, change the verifier to allow sret on the second parameter.
This also requires changing the Mips and X86 backends to return the
argument with the sret parameter, instead of assuming that the sret
parameter comes first.
The Sparc backend also returns sret parameters in a register, but I
wasn't able to update it to handle secondary sret parameters. It
currently calls report_fatal_error if you feed it an sret in the second
parameter.
Reviewers: rafael.espindola, majnemer
Differential Revision: http://reviews.llvm.org/D3617
llvm-svn: 208453
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
llvm-svn: 207143
Summary:
This was another incorrect use of hasMips64() vs isGP64bit().
Depends on D3344
Reviewers: matheusalmeida, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3347
llvm-svn: 206187
Summary:
- Conditional moves acting on 64-bit GPR's should require MIPS-IV rather than MIPS64
- ISD::MUL, and ISD::MULH[US] should be lowered on all 64-bit ISA's
Patch by David Chisnall
His work was sponsored by: DARPA, AFRL
I've added additional testcases to cover as much of the codegen changes
affecting MIPS-IV as I can. Where I've been unable to find an existing
MIPS64 testcase that can be re-used for MIPS-IV (mainly tests covering
ISD::GlobalAddress and similar), I at least agree that MIPS-IV should
behave like MIPS64. Further testcases that are fixed by this patch will follow
in my next commit. The testcases from that commit that fail for MIPS-IV without
this patch are:
LLVM :: CodeGen/Mips/2010-07-20-Switch.ll
LLVM :: CodeGen/Mips/cmov.ll
LLVM :: CodeGen/Mips/eh-dwarf-cfa.ll
LLVM :: CodeGen/Mips/largeimmprinting.ll
LLVM :: CodeGen/Mips/longbranch.ll
LLVM :: CodeGen/Mips/mips64-f128.ll
LLVM :: CodeGen/Mips/mips64directive.ll
LLVM :: CodeGen/Mips/mips64ext.ll
LLVM :: CodeGen/Mips/mips64fpldst.ll
LLVM :: CodeGen/Mips/mips64intldst.ll
LLVM :: CodeGen/Mips/mips64load-store-left-right.ll
LLVM :: CodeGen/Mips/sint-fp-store_pattern.ll
Reviewers: dsanders
Reviewed By: dsanders
CC: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3343
llvm-svn: 206183
Summary:
They behave in accordance with the Has2008 and ABS2008 configuration bits of the processor which are used to select between the 1985 and 2008 versions of IEEE 754. In 1985 mode, these instructions are arithmetic (i.e. they raise invalid operation exceptions when given NaN), in 2008 mode they are non-arithmetic (i.e. they are copies).
nmadd.[ds], and nmsub.[ds] are still subject to -enable-no-nans-fp-math because the ISA spec does not explicitly state that they obey Has2008 and ABS2008.
Fixed the issue with the previous version of this patch (r205628). A pre-existing 'let Predicate =' statement was removing some predicates that were necessary for FP64 to behave correctly.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3274
llvm-svn: 205844
Summary:
They behave in accordance with the Has2008 and ABS2008 configuration bits of the
processor which are used to select between the 1985 and 2008 versions of IEEE
754. In 1985 mode, these instructions are arithmetic (i.e. they raise invalid
operation exceptions when given NaN), in 2008 mode they are non-arithmetic
(i.e. they are copies).
nmadd.[ds], and nmsub.[ds] are still subject to -enable-no-nans-fp-math because
the ISA spec does not explicitly state that they obey Has2008 and ABS2008.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3274
llvm-svn: 205628
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
llvm-svn: 205292
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
llvm-svn: 205229
Summary:
No functional change since these predicates are (currently) synonymous.
Extracted from a patch by David Chisnall
His work was sponsored by: DARPA, AFRL
Differential Revision: http://llvm-reviews.chandlerc.com/D3202
llvm-svn: 204943
Summary:
The short name is quite convenient so provide an accessor for them instead.
No functional change
Depends on D3177
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3178
llvm-svn: 204911
The Octeon cpu from Cavium Networks is mips64r2 based and has an extended
instruction set. In order to utilize this with LLVM, a new cpu feature "octeon"
and a subtarget feature "cnmips" is added. A small set of new instructions
(baddu, dmul, pop, dpop, seq, sne) is also added. LLVM generates dmul, pop and
dpop instructions with option -mcpu=octeon or -mattr=+cnmips.
llvm-svn: 204337
This moves the check up into the parent class so that all targets can use it
without having to copy (and keep in sync) the same error message.
llvm-svn: 198579
__builtin_returnaddress requires that the value passed into is be a constant.
However, at -O0 even a constant expression may not be converted to a constant.
Emit an error message intead of crashing.
llvm-svn: 198531
in case the operands are constants and its difference is |1|.
It should be possible in those cases to rematerialize the result using
MIPS's slt and similar instructions.
The small update to some of the tests in cmov.ll, sel1c.ll and sel2c.ll was needed
otherwise the optimization implemented in this patch would have been triggered
(difference between the operands was 1) and that would have changed the semantic
of the tests.
llvm-svn: 196498
Like GCC, this re-uses the 'f' constraint and a new 'w' print-modifier:
asm ("ldi.w %w0, 1", "=f"(result));
Unlike GCC, the 'w' print-modifer is not _required_ to produce the intended
output. This is a consequence of differences in the internal handling of
the registers in each compiler. To be source-compatible between the
compilers, users must use the 'w' print-modifier.
MSA registers (including control registers) are supported in clobber lists.
llvm-svn: 194476
formal arguments on the stack and stores created afterwards. We need this to
ensure tail call optimized function calls do not write over the argument area
of the stack before it is read out.
llvm-svn: 194309