Make member function const where possible, use LLVM_DEBUG to print debug traces
rather than a custom option, pass by reference to avoid null checking, ...
Reviewed By: fhann
Differential Revision: https://reviews.llvm.org/D89895
Replace `ContentCache::getRawBuffer` with `getBufferDataIfLoaded` and
`getBufferIfLoaded`, excising another accessor for the underlying
`MemoryBuffer*` in favour of `StringRef` and `MemoryBufferRef`.
Differential Revision: https://reviews.llvm.org/D89445
When InstCombine removes an alloca, it erases the dbg.{addr,declare}
instructions which refer to the alloca. It would be better to instead
remove all debug intrinsics which describe the contents of the dead
alloca, namely all dbg.value(<dead alloca>, ..., DW_OP_deref)'s.
This effectively undoes work performed in an InstCombine run earlier in
the pipeline by LowerDbgDeclare, which inserts DW_OP_deref dbg.values
before CallInst users of an alloca. The motivating example looks like:
```
define void @foo(i32 %0) {
%a = alloca i32 ; This alloca is erased.
store i32 %0, i32* %a
dbg.value(i32 %0, "arg0") ; This dbg.value survives.
dbg.value(i32* %a, "arg0", DW_OP_deref)
call void @trivially_inlinable_no_op(i32* %a)
ret void
}
```
If the DW_OP_deref dbg.value is not erased, it becomes dbg.value(undef)
after inlining, making "arg0" unavailable. But we already have dbg.value
descriptions of the alloca's value (from LowerDbgDeclare), so the
DW_OP_deref dbg.value cannot serve its purpose of describing an
initialization of the alloca by some callee. It invalidates other useful
dbg.values, causing large gaps in location coverage, so we should delete
it (even though doing so may cause stale dbg.values to appear, if
there's a dead store to `%a` in @trivially_inlinable_no_op).
OTOH, it wouldn't be correct to delete all dbg.value descriptions of an
alloca. Note that it's possible to describe a variable that takes on
different pointer values, e.g.:
```
void use(int *);
void t(int a, int b) {
int *local = &a; // dbg.value(i32* %a.addr, "local")
local = &b; // dbg.value(i32* undef, "local")
use(&a); // (note: %b.addr is optimized out)
local = &a; // dbg.value(i32* %a.addr, "local")
}
```
In this example, the alloca for "b" is erased, but we need to describe
the value of "local" as <unavailable> before the call to "use". This
prevents "local" from appearing to be equal to "&a" at the callsite.
rdar://66592859
Differential Revision: https://reviews.llvm.org/D85555
The ELF spec says
> If the sh_flags field for this section header includes the attribute SHF_INFO_LINK, then this member represents a section header table index.
Set SHF_INFO_LINK so that binary manipulation tools know that sh_info is
a section header table index instead of (the number of local symbols in the case of SHT_SYMTAB/SHT_DYNSYM).
We have already added SHF_INFO_LINK for --emit-relocs retained SHT_REL[A].
For example, we can teach llvm-objcopy to preserve the section index of the sh_info referenced section if
SHF_INFO_LINK is set. (GNU objcopy recognizes .rel[a].plt and updates
sh_info even if SHF_INFO_LINK is not set).
Reviewed By: grimar, psmith
Differential Revision: https://reviews.llvm.org/D89828
Non-instruction defs like arguments, constants or global values
always dominate all instructions/uses inside the function. This
case currently needs to be treated separately by the caller, see
https://reviews.llvm.org/D89623#inline-832818 for an example.
This patch makes the dominator tree APIs accept a Value instead of
an Instruction and always returns true for the non-Instruction case.
A complication here is that BasicBlocks are also Values. For that
reason we can't support the dominates(Value *, BasicBlock *)
variant, as it would conflict with dominates(BasicBlock *, BasicBlock *),
which has different semantics. For the other two APIs we assert
that the passed value is not a BasicBlock.
Differential Revision: https://reviews.llvm.org/D89632
AArch64 does not have a flexible vector select instruction. In some
cases, the selects can be turned into min/max however, for which there
are dedicated vector instructions on AArch64.
This patch adds some tests for such cases.
Add new loop metadata amdgpu.loop.unroll.threshold to allow the initial AMDGPU
specific unroll threshold value to be specified on a loop by loop basis.
The intention is to be able to to allow more nuanced hints, e.g. specifying a
low threshold value to indicate that a loop may be unrolled if cheap enough
rather than using the all or nothing llvm.loop.unroll.disable metadata.
Differential Revision: https://reviews.llvm.org/D84779
Fixes
$ ninja obj/build/rel/gen/clang-tools-extra/clangd/CompletionModel.CompletionModel.obj
Some tablegen include files from clang/include/clang/AST and
clang/include/clang/Sema need to be generated before CompletionModel is
compiled.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89657
In preparation for potential future concurrency, a FunctionPass
shouldn't modify anything at the module level that other FunctionPasses
can also modify.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89890
This patch completes https://reviews.llvm.org/D83560. Now that the
compiler can emit `DW_OP_implicit_value` into DWARF expressions, lldb
needed to learn reading these opcodes for variable inspection and
expression evaluation.
This implicit location descriptor specifies an immediate value with two
operands: the length (ULEB128) followed by a block representing the value
in the target memory representation.
rdar://67406091
Differential revision: https://reviews.llvm.org/D89842
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Many non-language extensions are defined but also unused. This patch
removes them with their tests as they do not require compiler support.
The cl_khr_select_fprounding_mode extension is also removed because it
has been deprecated since OpenCL 1.1 and Clang doesn't have any specific
support for it.
The cl_khr_context_abort extension is only referred to in "The OpenCL
Specification", version 1.2 and 2.0, in Table 4.3, but no specification
is provided in "The OpenCL Extension Specification" for these versions.
Because it is both unused in Clang and lacks specification, this
extension is removed.
The following extensions are platform extensions that bring new OpenCL
APIs but do not impact the kernel language nor require compiler support.
They are therefore removed.
- cl_khr_gl_sharing, introduced in OpenCL 1.0
- cl_khr_icd, introduced in OpenCL 1.2
- cl_khr_gl_event, introduced in OpenCL 1.1
Note: this extension adds a new API to create cl_event but it also
specifies that these can only be used by clEnqueueAcquireGLObjects.
Hence, they cannot be used on the device side and the extension does
not impact the kernel language.
- cl_khr_d3d10_sharing, introduced in OpenCL 1.1
- cl_khr_d3d11_sharing, introduced in OpenCL 1.2
- cl_khr_dx9_media_sharing, introduced in OpenCL 1.2
- cl_khr_image2d_from_buffer, introduced in OpenCL 1.2
- cl_khr_initialize_memory, introduced in OpenCL 1.2
- cl_khr_gl_depth_images, introduced in OpenCL 1.2
Note: this extension is related to cl_khr_depth_images but only the
latter adds new features to the kernel language.
- cl_khr_spir, introduced in OpenCL 1.2
- cl_khr_egl_event, introduced in OpenCL 1.2
Note: this extension adds a new API to create cl_event but it also
specifies that these can only be used by clEnqueueAcquire* API
functions. Hence, they cannot be used on the device side and the
extension does not impact the kernel language.
- cl_khr_egl_image, introduced in OpenCL 1.2
- cl_khr_terminate_context, introduced in OpenCL 1.2
The minimum required OpenCL version used in OpenCLExtensions.def for
these extensions is not always correct. Removing these address that
issue.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D89372
The __ocml_*_rte_f32 and __ocml_*_rte_f64 functions are not
available if OCML_BASIC_ROUNDED_OPERATIONS is not defined.
Reviewed By: b-sumner, yaxunl
Fixes: SWDEV-257235
Differential Revision: https://reviews.llvm.org/D89966
It was already disabled under -Oz in
buildFunctionSimplificationPipeline(), but not in
buildModuleOptimizationPipeline()/addPGOInstrPasses().
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D89927
In a new Range class was introduced to simplify and the Disassembler API
and reduce duplication. It unintentionally broke the
SBFrame::Disassemble functionality because it unconditionally converts
the number of instructions to a Range{Limit::Instructions,
num_instructions}. This is subtly different from the previous behavior,
where now we're passing a Range and assume it's valid in the callee, the
original code would propagate num_instructions and the callee would
compare the value and decided between disassembling instructions or
bytes.
Unfortunately the existing tests was not particularly strict:
disassembly = frame.Disassemble()
self.assertNotEqual(len(disassembly), 0, "Disassembly was empty.")
This would pass because without this patch we'd disassemble zero
instructions, resulting in an error:
(lldb) script print(lldb.frame.Disassemble())
error: error reading data from section __text
Differential revision: https://reviews.llvm.org/D89925
This will allow the output directory to be specified by a build time
option, similar to the directory specified for regular PGO profiles via
-fprofile-generate=. The memory profiling instrumentation pass will
set up the variable. This is the same mechanism used by the PGO
instrumentation and runtime.
Depends on D87120 and D89629.
Differential Revision: https://reviews.llvm.org/D89086
This commit marks i16 MULH as expand in AMDGPU backend,
which is necessary after the refactoring in D80485.
Differential Revision: https://reviews.llvm.org/D89965
Both FastRegAlloc and LiveDebugVariables/greedy need to cope with
DBG_INSTR_REFs. None of them actually need to take any action, other than
passing DBG_INSTR_REFs through: variable location information doesn't refer
to any registers at this stage.
LiveDebugVariables stashes the instruction information in a tuple, then
re-creates it later. This is only necessary as the register allocator
doesn't expect to see any debug instructions while it's working. No
equivalence classes or interval splitting is required at all!
No changes are needed for the fast register allocator, as it just ignores
debug instructions. The test added checks that both of them preserve
DBG_INSTR_REFs.
This also expands ScheduleDAGInstrs.cpp to treat DBG_INSTR_REFs the same as
DBG_VALUEs when rescheduling instructions around. The current movement of
DBG_VALUEs around is less than ideal, but it's not a regression to make
DBG_INSTR_REFs subject to the same movement.
Differential Revision: https://reviews.llvm.org/D85757
This test checks that the output of `SBTarget.GetDescription()` contains the
substrings `'a.out', 'Target', 'Module', 'Breakpoint'` in that order. This test
is currently failing on Apple simulators as apparently 'Module' can't be found
in the output after 'Target".
The reason for that is that the actual output of `SBTarget.GetDescription()` looks like this:
```
Target
Module /build/path/lldb-test-build.noindex/python_api/target/TestTargetAPI.test_get_description_dwarf/a.out
0x7ff2b6d3f990: ObjectFileMachO64, file = /build/path/lldb-test-build.noindex/python_api/target/TestTargetAPI.test_get_description
[...]
0x7ff307150000: BreakpointList with 0 Breakpoints:
<LLDB module output repeats for each loaded module>
```
Clearly the string order should be `'Target', 'Module', 'a.out', 'Breakpoint'`.
However, LLDB is also a bunch of system shared libraries (libxpc.dylib,
libobjc.A.dylib, etc.) when *not* running against a simulator, we end up
unintentionally finding the `'Target', 'Module', 'Breakpoint'` substrings in the
trailing descriptions of the system modules. When running against a simulator we
however don't load shared system libraries.
This patch just moves the substrings in the correct order to make this test pass
without having any shared library modules in the description output.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D89698
If the end instruction of the scheduling region was a DBG_VALUE, the
uses of the debug instruction were tracked as if they were real
uses. This would then hit the deadDefHasNoUse assertion in
addVRegDefDeps if the only use was the debug instruction.
The instruction referencing work currently only works on X86, and all the
tests for it will be X86 based for the time being. Configure the whole
directory to be X86-only, seeing how I keep on landing tests that don't
have the correct REQUIRES lines.
[OpenMP] Emit calls to int64_t functions for amdgcn
Two functions, syncwarp and active_thread_mask, return lanemask_t. Currently
this is assumed to be int32, which is true for nvptx. Patch makes the type
target architecture dependent.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89746
Lower from Async dialect to LLVM by converting async regions attached to `async.execute` operations into LLVM coroutines (https://llvm.org/docs/Coroutines.html):
1. Outline all async regions to functions
2. Add LLVM coro intrinsics to mark coroutine begin/end
3. Use MLIR conversion framework to convert all remaining async types and ops to LLVM + Async runtime function calls
All `async.await` operations inside async regions converted to coroutine suspension points. Await operation outside of a coroutine converted to the blocking wait operations.
Implement simple runtime to support concurrent execution of coroutines.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D89292
The Darwin builder currently assumes in `getArchCFlags` that the passed `arch`
value is an actual string it can string.join with vendor/os/version/env strings:
```
triple = '-'.join([arch, vendor, os, version, env])
```
However this is not true for most tests as we just pass down the `arch=None`
default value from `TestBase.build`. This causes that if we actually end up in
this function we just error out when concatenating `None` with the other actual
strings of vendor/os/version/env. What we should do instead is check that if
there is no test-specific architecture that we fall back to the configuration's
architecture value.
It seems we already worked around this in `builder.getArchSpec` by explicitly
falling back to the architecture specified in the configuration.
This patch just moves this fallback logic to the top `build` function so that it
affects all functions called from `TestBase.build`.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D89056
Add the MVT equivalent handling for EVT changeTypeToInteger/changeVectorElementType/changeVectorElementTypeToInteger.
All the SimpleVT code already exists inside the EVT equivalents, but by splitting this out we can use these directly inside MVT types without converting to/from EVT.
This patch touches two optimizations, TwoAddressInstruction and X86's
FixupLEAs pass, both of which optimize by re-creating instructions. For
LEAs, various bits of arithmetic are better represented as LEAs on X86,
while TwoAddressInstruction sometimes converts instrs into three address
instructions if it's profitable.
For debug instruction referencing, both of these require substitutions to
be created -- the old instruction number must be pointed to the new
instruction number, as illustrated in the added test. If this isn't done,
any variable locations based on the optimized instruction are
conservatively dropped.
Differential Revision: https://reviews.llvm.org/D85756
There are bunch of optimization opportunities right now in the vector
popcnt code gen when doing simple less-than/greater-than comparisons, so
let's examine them all to ensure that things don't regress as different
scenarios are fixed. We can always delete some later once some fixes are
made.
Please note: the new files were auto-generated. If people want, I can
commit the short C code that printed out the various combinations.