Commit Graph

150 Commits

Author SHA1 Message Date
Eli Friedman 9b9454af8a Require "target datalayout" to be at the beginning of an IR file.
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.

Differential Revision: https://reviews.llvm.org/D78413
2020-04-20 11:55:49 -07:00
Roman Lebedev c4b757be02
Revert BCmp Loop Idiom recognition transform (PR43870)
As discussed in https://bugs.llvm.org/show_bug.cgi?id=43870,
this transform is missing a crucial legality check:
the old (non-countable) loop would early-return upon first mismatch,
but there is no such guarantee for bcmp/memcmp.

We'd need to ensure that [PtrA, PtrA+NBytes) and [PtrB, PtrB+NBytes)
are fully dereferenceable memory regions. But that would limit
the transform to constant loop trip counts and would further
cripple it because dereferenceability analysis is *very* partial.

Furthermore, even if all that is done, every single test
would need to be rewritten from scratch.

So let's just give up.
2019-11-02 12:48:03 +03:00
Roman Lebedev fda3243fdd [LoopIdiom] BCmp: check, not assert that loop exits exit out of the loop (PR43687)
We can't normally stumble into that assertion because a tautological
*conditional* `br` in loop body is required, one that always
branches to loop latch. But that should have been always folded
to an unconditional branch before we get it.
But that is not guaranteed if the pass is run standalone.
So let's just promote the assertion into a proper check.

Fixes https://bugs.llvm.org/show_bug.cgi?id=43687

llvm-svn: 375100
2019-10-17 11:01:29 +00:00
Roman Lebedev 76e02af704 [LoopIdiom] BCmp: loop exit count must not be wider than size_t that `bcmp` takes
As reported by Joerg Sonnenberger in IRC, for 32-bit systems,
where pointer and size_t are 32-bit, if you use 64-bit-wide variable
in the loop, you could end up with loop exit count being of the type
wider than the size_t. Now, i'm not sure if we can produce `bcmp`
from that (just truncate?), but we certainly should not assert/miscompile.

llvm-svn: 374811
2019-10-14 19:46:34 +00:00
Roman Lebedev 76cdcf25b8 [LoopIdiomRecognize] Recommit: BCmp loop idiom recognition
Summary:
This is a recommit, this originally landed in rL370454 but was
subsequently reverted in  rL370788 due to
https://bugs.llvm.org/show_bug.cgi?id=43206
The reduced testcase was added to bcmp-negative-tests.ll
as @pr43206_different_loops - we must ensure that the SCEV's
we got are both for the same loop we are currently investigating.

Original commit message:

@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: miyuki, hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 374662
2019-10-12 15:35:32 +00:00
Roman Lebedev 45539737dd [NFC][LoopIdiom] Add bcmp loop idiom miscompile test from PR43206.
The transform forgot to check SCEV loop scopes.

https://bugs.llvm.org/show_bug.cgi?id=43206

llvm-svn: 374661
2019-10-12 15:35:16 +00:00
Roman Lebedev c41e9f6bbf [NFC][LoopIdiom] Move one bcmp test into the proper place
llvm-svn: 374660
2019-10-12 15:35:09 +00:00
Roman Lebedev bdd65351d3 Revert r370454 "[LoopIdiomRecognize] BCmp loop idiom recognition"
https://bugs.llvm.org/show_bug.cgi?id=43206 was filed,
claiming that there is a miscompilation.
Reverting until i investigate.

This reverts commit r370454

llvm-svn: 370788
2019-09-03 17:14:56 +00:00
Roman Lebedev 5c9f3cfec7 [LoopIdiomRecognize] BCmp loop idiom recognition
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 370454
2019-08-30 09:51:23 +00:00
Brian Homerding b4b21d807e Add, and infer, a nofree function attribute
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).

Reviewers: jdoerfert

Differential Revision: https://reviews.llvm.org/D49165

llvm-svn: 365336
2019-07-08 15:57:56 +00:00
Orlando Cazalet-Hyams 1251cac62a [DebugInfo@O2][LoopVectorize] pr39024: Vectorized code linenos step through loop even after completion
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024

The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:

A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.

In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.

I have set up a separate review D61933 for a fix which is required for this patch.

Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse

Reviewed By: hfinkel, jmorse

Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits

Tags: #llvm, #debug-info

Differential Revision: https://reviews.llvm.org/D60831

> llvm-svn: 363046

llvm-svn: 363786
2019-06-19 10:50:47 +00:00
Sam Parker 60d6fb2a63 [SCEV] Use NoWrapFlags when expanding a simple mul
Second functional change following on from rL362687. Pass the
NoWrapFlags from the MulExpr to InsertBinop when we're generating a
shl or mul.

Differential Revision: https://reviews.llvm.org/D61934

llvm-svn: 363540
2019-06-17 10:05:18 +00:00
Fangrui Song ac14f7b10c [lit] Delete empty lines at the end of lit.local.cfg NFC
llvm-svn: 363538
2019-06-17 09:51:07 +00:00
Orlando Cazalet-Hyams a947156396 Revert "[DebugInfo@O2][LoopVectorize] pr39024: Vectorized code linenos step through loop even after completion"
This reverts commit 1a0f7a2077.
See phabricator thread for D60831.

llvm-svn: 363132
2019-06-12 08:34:51 +00:00
Orlando Cazalet-Hyams 1a0f7a2077 [DebugInfo@O2][LoopVectorize] pr39024: Vectorized code linenos step through loop even after completion
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024

The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:

A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.

In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.

I have set up a separate review D61933 for a fix which is required for this patch.

Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse

Reviewed By: hfinkel, jmorse

Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits

Tags: #llvm, #debug-info

Differential Revision: https://reviews.llvm.org/D60831

llvm-svn: 363046
2019-06-11 10:37:20 +00:00
Benjamin Kramer f1249442cf Revert "[SCEV] Use wrap flags in InsertBinop"
This reverts commit r362687. Miscompiles llvm-profdata during selfhost.

llvm-svn: 362699
2019-06-06 12:35:46 +00:00
Sam Parker 7cc580f5e9 [SCEV] Use wrap flags in InsertBinop
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.

Differential Revision: https://reviews.llvm.org/D61934

llvm-svn: 362687
2019-06-06 08:56:26 +00:00
Roman Lebedev e8578953ac [LoopIdiom] Basic OptimizationRemarkEmitter handling
Summary:
I'm adding ORE to memset/memcpy formation, with tests,
but mainly this is split off from D61144.

Reviewers: reames, anemet, thegameg, craig.topper

Reviewed By: thegameg

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62631

llvm-svn: 362092
2019-05-30 13:02:06 +00:00
Reid Kleckner d028a463d5 Regenerate test case again after last revert
llvm-svn: 360204
2019-05-07 22:40:40 +00:00
Simon Pilgrim 0ed545ebb3 Regenerate test to try and fix buildbots
llvm-svn: 360173
2019-05-07 17:10:10 +00:00
Roman Lebedev 445c22b7eb [NFC][LoopIdiomRecognize] Some basic baseline tests for bcmp loop idiom
Doubt this is the final test coverage, but this appears to have good
coverage already, so i figure i might as well precommit it.

llvm-svn: 359173
2019-04-25 08:33:47 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Davide Italiano 73929c4d24 [LoopIdiomRecognize] @llvm.dbg values shouldn't affect the transformation.
Summary: PR40564

Reviewers: aprantl, rnk

Subscribers: llvm-commits, hiraditya

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D57629

llvm-svn: 353007
2019-02-03 20:33:20 +00:00
Craig Topper c9a6000755 [LoopIdiomRecognize] Add CTTZ support
Summary:
Existing LIR recognizes CTLZ where shifting input variable right until it is zero. (Shift-Until-Zero idiom)

This commit:
1. Augments Shift-Until-Zero idiom to recognize CTTZ where input variable is shifted left.
2. Prepare for BitScan idiom recognition.

Patch by Yuanfang Chen (tabloid.adroit)

Reviewers: craig.topper, evstupac

Reviewed By: craig.topper

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D55876

llvm-svn: 350074
2018-12-26 21:59:48 +00:00
Alina Sbirlea bf9fe79397 SCEV should forget all loops containing a deleted block.
Summary:
LoopSimplifyCFG should update ScEv for all loops after a block is deleted.
If the deleted block "Succ" is part of L, then it is part of all parent loops, so forget topmost loop.

Reviewers: greened, mkazantsev, sanjoy

Subscribers: jlebar, javed.absar, uabelho, llvm-commits

Differential Revision: https://reviews.llvm.org/D50422

llvm-svn: 339363
2018-08-09 17:53:26 +00:00
Craig Topper ed6acde8cf [LoopIdiomRecognize] Don't convert a do while loop to ctlz.
This commit suppresses turning loops like this into "(bitwidth - ctlz(input))".

unsigned foo(unsigned input) {
  unsigned num = 0;
  do {
    ++num;
    input >>= 1;
  } while (input != 0);
  return num;
}

The loop version returns a value of 1 for both an input of 0 and an input of 1. Converting to a naive ctlz does not preserve that.

Theoretically we could do better if we checked isKnownNonZero or we could insert a select to handle the divergence. But until we have motivating cases for that, this is the easiest solution.

llvm-svn: 336864
2018-07-11 22:35:28 +00:00
Craig Topper ef08aec935 [LoopIdiomRecognize] Add a test case showing a loop we turn into ctlz that we shouldn't.
This loop executes one iteration without checking the input value. This produces a count of 1 for an input of 0 and 1. We are turning this into 32 - ctlz(n), but that returns 0 if n is 0.

llvm-svn: 336862
2018-07-11 22:17:26 +00:00
Manoj Gupta 77eeac3d9e llvm: Add support for "-fno-delete-null-pointer-checks"
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.

More details : https://lkml.org/lkml/2018/4/4/601

GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.

-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.

This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.

Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv

Reviewed By: efriedma, george.burgess.iv

Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits

Differential Revision: https://reviews.llvm.org/D47895

llvm-svn: 336613
2018-07-09 22:27:23 +00:00
Craig Topper 2835278ee0 [LoopIdiomRecognize] Support for converting loops that use LSHR to CTLZ.
In the 'detectCTLZIdiom' function support for loops that use LSHR instruction instead of ASHR has been added.

This supports creating ctlz from the following code.

int lzcnt(int x) {
     int count = 0;
     while (x > 0)  {
          count++;
          x = x >> 1;
     }
    return count;
}

Patch by Olga Moldovanova

Differential Revision: https://reviews.llvm.org/D48354

llvm-svn: 336509
2018-07-08 01:45:47 +00:00
John Brawn c5a6392be3 [ValueTracking] Match select abs pattern when there's an sext involved
When checking a select to see if it matches an abs, allow the true/false values
to be a sign-extension of the comparison value instead of requiring that they're
directly the comparison value, as all the comparison cares about is the sign of
the value.

This fixes a regression due to r333702, where we were no longer generating ctlz
due to isKnownNonNegative failing to match such a pattern.

Differential Revision: https://reviews.llvm.org/D47631

llvm-svn: 333927
2018-06-04 16:53:57 +00:00
Craig Topper 9a6c0bdcbd [LoopIdiomRecognize] Only convert loops to ctlz if we can prove that the input is non-negative.
Summary:
Loop idiom recognize tries to convert loops like

```
int foo(int x) {
  int cnt = 0;
  while (x) {
    x >>= 1;
    ++cnt;
  }
  return cnt;
}
```

into calls to ctlz, but if x is initially negative this loop should be infinite.

It happens that the cases that motivated this change have an absolute value of x before the loop. So this patch restricts the transform to cases where we know x is positive. Note: We are relying on the absolute value of INT_MIN to be undefined so we can assume that the result is always positive.

Fixes PR37479

Reviewers: spatel, hfinkel, efriedma, javed.absar

Reviewed By: efriedma

Subscribers: dmgreen, llvm-commits

Differential Revision: https://reviews.llvm.org/D47348

llvm-svn: 333702
2018-05-31 22:16:55 +00:00
Craig Topper a3f39ee33d [LoopIdiomRecognize] Add a test case to show incorrect transformation of an infinite loop with side effets into a countable loop using ctlz.
We currently recognize this idiom where x is signed and thus the shift in an ashr.

int cnt = 0;
while (x) {
  x >>= 1; // arithmetic shift right
  ++cnt;
}

and turn it into (bitwidth - ctlz(x)). And if there is anything else in the loop we will create a new loop that runs that many times.

If x is initially negative, the shift result will never be 0 and thus the loop is infinite. If you put something with side effects in the loop, that side effect will now only happen bitwidth times instead of an infinite number of times.

So this transform is only safe for logical shift right (which we don't currently recognize) or if we can prove that x cannot be negative before the loop.

llvm-svn: 331493
2018-05-03 23:50:29 +00:00
Craig Topper 856fd68690 [LoopIdiomRecognize] When looking for 'x & (x -1)' for popcnt, make sure the left hand side of the 'and' matches the left hand side of the 'subtract'
llvm-svn: 331437
2018-05-03 05:48:49 +00:00
Craig Topper a0cba89f86 [LoopIdiomRecognize] Add a test case showing that we transform to ctpop without fully checking the 'x & (x-1)' part.
The code fails to check that the same value is used twice. We only make sure the left hand side of the and is part of the loop recurrence. The 'x' in the subtract can be any value.

llvm-svn: 331436
2018-05-03 05:48:48 +00:00
Elena Demikhovsky 945b7e5aa6 Adding a width of the GEP index to the Data Layout.
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.

Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html

I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.

Differential Revision: https://reviews.llvm.org/D42123

llvm-svn: 325102
2018-02-14 06:58:08 +00:00
Daniel Neilson fb99a493be [LoopIdiom] Be more aggressive when setting alignment in memcpy
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LoopIdiom pass to cease using the old IRBuilder CreateMemCpy single-alignment APIs in
favour of the new API that allows setting source and destination alignments independently.
This allows us to be slightly more aggressive in setting the alignment of memcpy calls that
loop idiom creates.

Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.

Reference
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

llvm-svn: 324626
2018-02-08 17:33:08 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Dan Gohman 2c74fe977d Add an @llvm.sideeffect intrinsic
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].

Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.

As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.

[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html

Differential Revision: https://reviews.llvm.org/D38336

llvm-svn: 317729
2017-11-08 21:59:51 +00:00
Adrian Prantl abe04759a6 Remove the obsolete offset parameter from @llvm.dbg.value
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.

rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951

llvm-svn: 309426
2017-07-28 20:21:02 +00:00
Chandler Carruth 1dc34c6d80 [LIR] Teach LIR to avoid extending the BE count prior to adding one to
it when safe.

Very often the BE count is the trip count minus one, and the plus one
here should fold with that minus one. But because the BE count might in
theory be UINT_MAX or some such, adding one before we extend could in
some cases wrap to zero and break when we scale things.

This patch checks to see if it would be safe to add one because the
specific case that would cause this is guarded for prior to entering the
preheader. This should handle essentially all of the common loop idioms
coming out of C/C++ code once canonicalized by LLVM.

Before this patch, both forms of loop in the added test cases ended up
subtracting one from the size, extending it, scaling it up by 8 and then
adding 8 back onto it. This is really silly, and it turns out made it
all the way into generated code very often, so this is a surprisingly
important cleanup to do.

Many thanks to Sanjoy for showing me how to do this with SCEV.

Differential Revision: https://reviews.llvm.org/D35758

llvm-svn: 308968
2017-07-25 10:48:32 +00:00
Daniel Neilson 3faabbbe85 [Atomics] Rename and change prototype for atomic memcpy intrinsic
Summary:

Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.

Reviewers: reames, sanjoy, efriedma

Reviewed By: reames

Subscribers: mzolotukhin, anna, llvm-commits, skatkov

Differential Revision: https://reviews.llvm.org/D33240

llvm-svn: 305558
2017-06-16 14:43:59 +00:00
Anna Thomas 2f1556726c [LoopIdiom] Move X86 specific atomic memcpy test to the X86 directory
Patch https://reviews.llvm.org/rL304806 was causing failures in Aarch64
and multiple other targets since the test should be run on X86 only.

Specifying the target triple is not enough. Moving the testcase to the
X86 target directory in LoopIdiom.

llvm-svn: 304809
2017-06-06 17:46:41 +00:00
Anna Thomas b2a212c070 [Atomics][LoopIdiom] Recognize unordered atomic memcpy
Summary:
Expanding the loop idiom test for memcpy to also recognize
unordered atomic memcpy. The only difference for recognizing
an unordered atomic memcpy and instead of a normal memcpy is
that the loads and/or stores involved are unordered atomic operations.

Background:  http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

Patch by Daniel Neilson!

Reviewers: reames, anna, skatkov

Reviewed By: reames, anna

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D33243

llvm-svn: 304806
2017-06-06 16:45:25 +00:00
Anna Thomas 777bb90bdc Revert "[Atomics][LoopIdiom] Recognize unordered atomic memcpy"
This reverts commit r304310.

It caused build failures in polly and mingw
due to undefined reference to
llvm::RTLIB::getMEMCPY_ELEMENT_ATOMIC.

llvm-svn: 304315
2017-05-31 17:20:51 +00:00
Anna Thomas 056c009f1b [Atomics][LoopIdiom] Recognize unordered atomic memcpy
Summary:
Expanding the loop idiom test for memcpy to also recognize unordered atomic memcpy.
The only difference for recognizing
an unordered atomic memcpy and instead of a normal memcpy is
that the loads and/or stores involved are unordered atomic operations.
Background:  http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

Patch by Daniel Neilson!

Reviewers: reames, anna, skatkov

Reviewed By: reames

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D33243

llvm-svn: 304310
2017-05-31 16:39:52 +00:00
Davide Italiano 4bc91190ea [LIR] Strengthen the check for recurrence variable in popcnt/CTLZ.
Fixes PR33114.
Differential Revision:  https://reviews.llvm.org/D33420

llvm-svn: 303700
2017-05-23 22:32:56 +00:00
Evgeny Stupachenko 2fecd38ab8 The patch adds CTLZ idiom recognition.
Summary:

The following loops should be recognized:
i = 0;
while (n) {
  n = n >> 1;
  i++;
  body();
}
use(i);

And replaced with builtin_ctlz(n) if body() is empty or
for CPUs that have CTLZ instruction converted to countable:

for (j = 0; j < builtin_ctlz(n); j++) {
  n = n >> 1;
  i++;
  body();
}
use(builtin_ctlz(n));

Reviewers: rengolin, joerg

Differential Revision: http://reviews.llvm.org/D32605

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 303102
2017-05-15 19:08:56 +00:00
Aditya Kumar 1c42d135e1 [LoopIdiom] check for safety while expanding
Loop Idiom recognition was generating memset in a case that
would result generating a division operation to an unsafe location.

Differential Revision: https://reviews.llvm.org/D32674

llvm-svn: 302238
2017-05-05 14:49:45 +00:00
Sanjoy Das 206f65c049 [LIR] Obey non-integral pointer semantics
Summary: See http://llvm.org/docs/LangRef.html#non-integral-pointer-type

Reviewers: haicheng

Reviewed By: haicheng

Subscribers: mcrosier, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32196

llvm-svn: 301238
2017-04-24 20:12:10 +00:00