Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
The Fortran 2018 standard defines the concept of simple contiguity
in subclause 9.5.4 as a characteristic of arrays. So that scalars
may also be used in contexts where simply contiguous arrays are
allowed, f18 treats them as single-element arrays that are trivially
contiguous. This patch documents this semantic extension and
also adds comments to the predicate that implements the concept.
Differential Revision: https://reviews.llvm.org/D111679
An LLVM Flang build bot for Windows recently failed with a
bunch of warning messages. None were from recent changes to
the Fortran compiler; I suspect that a newer (or maybe older)
version of MSVC was being used, or perhaps a different set of
compiler options were temporarily applied to the build, since
the buildbot status went back to green shortly thereafter.
Most of the warnings looked bogus to me, but some are legitimate
concerns and we might as well clean them up. This patch does so.
Differential Revision: https://reviews.llvm.org/D111677
This patch upstream the cfg conversion pass. This pass
rewrite FIR loop-like operation to a CFG.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111095
As reported in https://bugs.llvm.org/show_bug.cgi?id=48145, name resolution for omp critical construct was failing. This patch adds functionality to help that name resolution as well as implementation to catch name mismatches.
The following semantic restrictions are therefore handled here:
- If a name is specified on a critical directive, the same name must also be specified on the end critical directive
- If no name appears on the critical directive, no name can appear on the end critical directive
- If a name appears on either the start critical directive or the end critical directive
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110502
To get proper wrap-around behavior for the various kind parameter
values of the optional COUNT= and COUNT_MAX= dummy arguments to
the intrinsic subroutine SYSTEM_CLOCK, add an extra argument to
the APIs for lowering to pass the integer kind of the actual argument.
Avoid confusion by requiring that both actual arguments have the same
kind when both are present. The results of the runtime functions
remain std::int64_t and lowering should still convert them before
storing to the actual argument variables.
Rework the implementation a bit to accomodate the dynamic
specification of the kind parameter, and to clean up some coding
issues with preprocessing and templates.
Use the kind of the COUNT=/COUNT_MAX= actual arguments to determine
the clock's resolution, where possible, in conformance with other
Fortran implementations.
Differential Revision: https://reviews.llvm.org/D111281
Add rewrite patterns for fir.convert op canonicalization.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D111537
Co-authored-by: Valentin Clement <clementval@gmail.com>
Update .clang-tidy file with the value used in fir-dev.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: rovka
Differential Revision: https://reviews.llvm.org/D111525
Co-authored-by: Valentin Clement <clementval@gmail.com>
This patch adds a new abstract class for frontend actions:
`PrescanAndSemaDebugAction`. It's almost identical to
`PrescanAndSemaAction`, but in the presence of semantic errors it does
not skip the corresponding `ExecuteAction` specialisation. Instead, it
runs it as if there were no semantic errors. This class is for developer
actions only (i.e. front-end driver options).
The new behaviour does not affect the return code from `flang-new -fc1`
when the input file is semantically incorrect. The return code is
inferred from the number of driver diagnostics generated in
`CompilerInstance::ExecuteAction` and this patch does not change that.
More specifically, the semantic errors are still reported and hence the
driver is able to correctly report that the compilation has failed (with
a non-zero return code).
This new base class is meant for debug actions only and
`DebugDumpAllAction` is updated to demonstrate the new behaviour. With
this change, `flang-new -fc1 -fdebug-dump-all` dumps the parse tree and
symbols for all input files, regardless of whether any semantic errors
were found.
This patch addresses https://bugs.llvm.org/show_bug.cgi?id=52097.
Differential Revision: https://reviews.llvm.org/D111308
Add pass that convert abstract result to function argument.
This pass is needed before the conversion to LLVM IR.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111146
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Upstream the character conversion pass.
Translates entities of one CHARACTER KIND to another.
By default the translation is to naively zero-extend or truncate a code
point to fit the destination size.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111405
Add affine demotion pass.
Affine dialect's default lowering for loads and stores is different from
fir as it uses the `memref` type. The `memref` type is not compatible with
the Fortran runtime. Therefore, conversion of memory operations back to
`fir.load` and `fir.store` with `!fir.ref<?>` types is required.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Rajan Walia <walrajan@gmail.com>
Co-authored-by: Sourabh Singh Tomar <SourabhSingh.Tomar@amd.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111257
Convert fir operations which satisfy affine constraints to the affine
dialect.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Rajan Walia <walrajan@gmail.com>
Co-authored-by: Sourabh Singh Tomar <SourabhSingh.Tomar@amd.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Reviewed By: schweitz, awarzynski
Differential Revision: https://reviews.llvm.org/D111155
Bit positions for the intrinsics IBCLR and IBSET and shift counts
for the intrinsics ISHFT/SHIFTA/SHIFTL/SHIFTR should be validated
when folding.
Differential Revision: https://reviews.llvm.org/D111327
Source lines with mismatched parentheses are hard cases for error
recovery in parsing, and the best error message (viz.,
"here's an unmatched parenthesis") can be emitted from the
prescanner.
Differential Revision: https://reviews.llvm.org/D111254#3046173
These functions were missing from the standard intrinsic module
IEEE_ARITHMETIC. IEEE_SCALB is an alias for the standard intrinsic
function SCALE(), and the others are defined as new builtin intrinsic
functions.
Differential Revision: https://reviews.llvm.org/D111253
Add the external name conversion pass needed for compiler
interoperability. This pass convert the Flang internal symbol name to
the common gfortran convention.
Clean up old passes without implementation in the Passes.ts file so
the project and fir-opt can build correctly.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111057
Partition libFIROptimizer into smaller libraries that reflect the
structure. Adapt potential problems.
This patch is part of the upstreaming effort from fir-dev branch. It's a
building stone to upstreaming transformations.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111055
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Partition libFIROptimizer into smaller libraries that reflect the
structure. Adapt potential problems.
This patch is part of the upstreaming effort from fir-dev branch. It's a
building stone to upstreaming transformations.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111055
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Partition libFIROptimizer into smaller libraries that reflect the
structure. Adapt potential problems.
This patch is part of the upstreaming effort from fir-dev branch. It's a
building stone to upstreaming transformations.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111055
fir.array_update is only handling intrinsic assignments.
They are two big differences with user defined assignments:
1. The LHS and RHS types may not match, this does not play well
with fir.array_update that relies on both the merge and the
updated element to have the same type.
2. user defined assignment has a call semantics, with potential
side effects. So if a fir.array_update can hide a call, it traits
would need to be updated.
Instead of hiding more semantic in the fir.array_update, introduce
a new fir.array_modify op that allows de-correlating indicating that
an array value element is modified, and how it is modified.
This allow the ArrayValueCopy pass to still perform copy elision
while not having to implement the call itself, and could in general
be used for all kind of assignments (e.g. character assignment).
Update the alias analysis to not rely on the merge arguments (since
fir.array_modify has none).
Instead, analyze what is done with the element address.
This implies adding the ability to follow the users of fir.array_modify,
as well as being able to go through fir.store that may be generated to
store the RHS value in order to pass it to a user define routine.
This is done by adding a ReachCollector class to gather all array
accesses.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D110928
Co-authored-by: Valentin Clement <clementval@gmail.com>
Fix some clang-tidy wrning in flang/Optimizer/Support and
remove explicit number of inlined elements for SmallVector. This
is mostly to sync with the changes from fir-dev.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D111044
The THEN keyword in the "ELSE IF (test) THEN" statement is useless
syntactically, and to omit it is a common error (at least for me!)
that has poor error recovery. This patch changes the parser to
cough up a simple "expected 'THEN'" and still recognize the rest of
the IF construct.
Differential Revision: https://reviews.llvm.org/D110952
According to OpenMP 5.0 spec document, the following semantic restrictions have been dealt with in this patch.
1. [sections construct] Orphaned section directives are prohibited. That is, the section directives must appear within the sections construct and must not be encountered elsewhere in the sections region.
Semantic checks for the following are not necessary, since use of orphaned section construct (i.e. without an enclosing sections directive) throws parser errors and control flow never reaches the semantic checking phase. Added a test case for the same.
2. [sections construct] Must be a structured block
Added test case and made changes to branching logic
3. [simd construct] Must be a structured block / A program that branches in or out of a function with declare simd is non conforming
4. Fixed !$omp do's handling of unlabeled CYCLEs
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D108904
All big enough parser, printer and verifier are moved to the cpp file.
This is one of the last one to be moved.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110929
fir.negf op is replaced by mlir.negf and
fir.modf is just deleted.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110932
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Remove explicit number of inlined elements for SmallVector.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D110912
Add the fir-char_convert op.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110818
Co-authored-by: Valentin Clement <clementval@gmail.com>
Move the big builder out of the td file to the cpp file.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110820
Revert "[flang][NFC] Add debug dump method to evaluate::Expr and semantics::Symbol"
This reverts commit b0e35fde21.
Revert "[flang] Add a wrapper for Fortran main program"
This reverts commit 2c1ce0755e.
Revert "[flang][NFC] Fix header comments in some runtime headers"
This reverts commit a63f57674d.
Follow up of https://reviews.llvm.org/D83397.
In folding, make pgmath usage conditional to C99 complex
support in C++. Disable warning in such case.
In lowering, use an empty class type to indicate C99 complex
type in runtime interface.
Add a unit test enforcing C99 complex can be processed
by FIR runtime interface builder.
Differential Revision: https://reviews.llvm.org/D110860
Helps debugging when working with symbol/expression issue. The dump
method is easy to call in the debugger.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Differential Revision: https://reviews.llvm.org/D110856
When the ProcRef is Symbol is a SubprogramDetails, the interface is
the SubprogramDetails. Do not return nullptr.
Differential Revision: https://reviews.llvm.org/D110853
Fold the transformational intrinsic function FINDLOC() for
all combinations of optional arguments and data types.
Differential Revision: https://reviews.llvm.org/D110757
The algorithm used to fold SQRT has some holes that
led to test failures; debug and add more tests.
Differential Revision: https://reviews.llvm.org/D110744
Support the extension intrinsic subroutines EXIT([status]) and ABORT()
in the intrinsic table and runtime support library. Lowering remains
to be done.
Differential Revision: https://reviews.llvm.org/D110741
Add pinned attributes and speicifc builders.
The pinned attribute helps mark those allocas in OpenMP regions that should not
be hoisted out by an alloca hoisting pass.
This patch is part of the upstreaming effort from fir-dev branch.
Coming from PR: https://github.com/flang-compiler/f18-llvm-project/pull/1065
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110815
Co-authored-by: Valentin Clement <clementval@gmail.com>
Move fir.freemem and fir.store to the Memory SSA operations sections.
Move parser, printer and verifier of fir.store to the .cpp file.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110816
Move the parser, printer, verifier and builder out of the .td file.
Rename lenparams to typeparams to be in sync with fir-dev.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: rovka
Differential Revision: https://reviews.llvm.org/D110690
Move the parsers, printers and builders from the TableGen file
to the .cpp file. Remaining parsers, printers and builders will be
moved when we update the operations.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D110626
Update the fir.alloca operation.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110415
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Updatet the fir.allocmem operation.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D110412
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Move coor operand from variadic values to ArrayAttr.
Update assembly format.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110652
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
Rearrange the contents of __builtin_* module files a little and
make sure that semantics implicitly USEs the module __Fortran_builtins
before processing each source file. This ensures that the special derived
types for TEAM_TYPE, EVENT_TYPE, LOCK_TYPE, &c. exist in the symbol table
where they will be available for use in coarray intrinsic function
processing.
Update IsTeamType() to exploit access to the __Fortran_builtins
module rather than applying ad hoc name tests. Move it and some
other utilities from Semantics/tools.* to Evaluate/tools.* to make
them available to intrinsics processing.
Add/correct the intrinsic table definitions for GET_TEAM, TEAM_NUMBER,
and THIS_IMAGE to exercise the built-in TEAM_TYPE as an argument and
as a result.
Add/correct/extend tests accordingly.
Differential Revision: https://reviews.llvm.org/D110356
Move the parser, printer and verifier to the .cpp file. Add builders
needed for lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz, mehdi_amini
Differential Revision: https://reviews.llvm.org/D110686
Co-authored-by: Valentin Clement <clementval@gmail.com>
Move builders to .cpp file and update accordingly.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110698
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Add getFinalValueAttrName() and remove specified number of
inlined elements for SmallVector. This patch is mainly motivated
to help the upstreaming effort.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110710
Rename `lenParams` to `typeparams` to be in sync with fir-dev.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110645
Rename `lenParams` to `typeparams` to be in sync with fir-dev.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110628
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Add the fir.save_result operation. It is use to save an
array, box, or record function result SSA-value to a memory location
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110407
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Update the fir.insert_on_range operation. Add a better description,
builder and verifier.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110389
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Enforce constraints C1034 & C1038, which disallow the use
of otherwise valid statements as branch targets when they
appear in FORALL &/or WHERE constructs. (And make the
diagnostic message somewhat more user-friendly.)
Differential Revision: https://reviews.llvm.org/D109936
A defined assignment subroutine invoked in the context of a WHERE
statement or construct must necessarily be elemental (C1032).
Differential Revision: https://reviews.llvm.org/D109932
Add support to create unique name for namelist group and be able to
deconstruct them.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110331
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Add support to create unique name for namelist group and be able to
deconstruct them.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110331
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
The strongly typed expression representation classes supported
a representation of parentheses only around intrinsic types
with specific kinds. Parentheses around derived type variables
must also be preserved so that expressions may be distinguished
from variables; this distinction matters for actual arguments &
construct associations.
Differential Revision: https://reviews.llvm.org/D110355
fir.cmpf op is not necessary anymore as it is replaced by mlir.cmpf.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110327
Co-authored-by: schweitzpgi
Co-authored-by: jeanPerier
This patch is part of the upstreaming effort from fir-dev branch.
Rename the function so the name conveys better what it does.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110323
Co-authored-by: schweitz
Co-authored-by: jeanPerier
This patch is part of the upstreaming effort from fir-dev branch and sync changes. Inline trival `isa_<type>` functions.
Co-authored-by: schweitzpgi
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D110233
A pointer with subscripts, substring indices, or components cannot
be initialized by a DATA statement (although of course a whole pointer
can be so). Catch the missing cases.
Differential Revision: https://reviews.llvm.org/D109931
Some intrinsic functions weren't findable because the table
wasn't strictly in order of names.
And complete a missing generalization of the extension DCONJG
to accept any kind of complex argument, like DREAL and DIMAG
were.
Differential Revision: https://reviews.llvm.org/D110002
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
Catch additional missing error cases for typed and untyped
NULL actual arguments to non-intrinsic procedures in cases
of explicit and implicit interfaces.
Differential Revision: https://reviews.llvm.org/D110003
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
A function can't be a specification function if it has a dummy procedure
argument, even if it's optional and unused. So don't check the reference
for actual procedure arguments, but rather the characteristics of the
function.
Differential Revision: https://reviews.llvm.org/D109935
From subclause 6.3.3.5: a program unit END statement cannot be
continued in fixed form, and other statements cannot have initial
lines that look like program unit END statements. I think this
is to avoid violating assumptions that are important to legacy
compilers' statement classification routines.
Differential Revision: https://reviews.llvm.org/D109933
Catch invalid attempts to extract the unknowable extent of the last
dimension of an assumed-size array dummy argument, and clean up
problems with assumed-rank arguments in similar circumstances
exposed by testing the fix.
Differential Revision: https://reviews.llvm.org/D109918
A procedure actual argument to a PURE procedure should be required
to have an explicit interface. Implicit-interface actual arguments
to non-PURE procedures remain a warning.
Differential Revision: https://reviews.llvm.org/D109926
The intrinsic inquiry functions SIZE and UBOUND -- but not LBOUND --
require a DIM= argument if their first argument is an assumed-size
array. The intrinsic SHAPE must not be used with an assumed-size
array.
Differential Revision: https://reviews.llvm.org/D109912
Silence a bogus error message about an out-of-range DIM= argument
when the argument is assumed-rank. (More generally, don't pretend
to be able to discern a shape of known rank for an assumed-rank
object.)
Differential Revision: https://reviews.llvm.org/D109915
Validation of the optional generic-spec on an END INTERFACE statement
was missing many possible error cases; reimplement it.
Differential Revision: https://reviews.llvm.org/D109910
This patch implements the following semantic checks according to
OpenMP Version 5.1 Ordered construct restriction:
```
At most one threads clause can appear on an ordered construct; At most
one simd clause can appear on an ordered construct; At most one
depend(source) clause can appear on an ordered construct; Either
depend(sink:vec) clauses or depend(source) clauses may appear on an
ordered construct, but not both.
```
This patch also implements the following semantic checks according to
the syntax and descriptions in OpenMP Version 5.1 Ordered construct:
```
The dependence types of sink or source are only allowed on an ordered
construct. The depend(*) clauses are not allowed when ordered construct
is a block construct with an ordered region. The threads or simd clauses
are not allowed when the ordered construct is a standalone construct
with no ordered region.
```
Co-authored-by: Sameeran Joshi <sameeranjayant.joshi@amd.com>
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D108512
Added 'this_image()' to the list of functions that are evaluated as intrinsic.
Added IsCoarray functions to determine if an expression is a coarray (corank > 1).
Added save attribute to coarray variables in test file, this_image.f90.
reviewers: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D108059
Complete folding of the intrinsic reduction function COUNT() for all
cases, including partial reductions with DIM= arguments.
Differential Revision: https://reviews.llvm.org/D109911
When the shapes of actual arguments to ELEMENTAL procedures are
sufficiently well known during semantics, require them to conform.
Differential Revision: https://reviews.llvm.org/D109909
Improve checking for NULL() and NULL(MOLD=) when used as
variables and expressions outside the few contexts where
a disassociated pointer can be valid. There were both
inappropriate errors and missing checks.
Differential Revision: https://reviews.llvm.org/D109905
This reverts commit 81f8ad1769.
This seems to break the shared libs build
(linaro-flang-aarch64-sharedlibs bot) with:
undefined reference to `Fortran::semantics::IsCoarray(Fortran::semantics::Symbol const&)
(from tools/flang/lib/Evaluate/CMakeFiles/obj.FortranEvaluate.dir/tools.cpp.o)
When linking lib/libFortranEvaluate.so.14git
Added 'this_image()' to the list of functions that are evaluated as intrinsic.
Added IsCoarray functions to determine if an expression is a coarray (corank > 1).
Added save attribute to coarray variables in test file, this_image.f90.
reviewers: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D108059
This patch implements the following check for THREADPRIVATE construct:
```
A variable that is part of another variable (as an array, structure
element or type parameter inquiry) cannot appear in a threadprivate
directive.
```
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D109685
This patch adds parsing support for the nontemporal clause. Also adds a couple of test cases.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D106896
https://reviews.llvm.org/D109156 did not properly update the case where
the equivalence symbol appearing in the common statement is the
"base symbol of an equivalence group" (this was the only case that previously
worked ok, and the patch broke it).
Fix this and add a test that actually uses this code path.
Differential Revision: https://reviews.llvm.org/D109439
Adds missing semantic checks for ELEMENTAL functions and subroutines,
their dummy arguments, and their results from F'2018 15.8.1 C15100-15102.
Differential Revision: https://reviews.llvm.org/D109380
Implement IEEE Real::SQRT() operation, then use it to
also implement Real::HYPOT(), which can then be used directly
to implement Complex::ABS().
Differential Revision: https://reviews.llvm.org/D109250
It only worked for internal procedures of subprograms,
but must also allow for internal procedures of the
main program. This broke the use of host-associated
implicitly-typed symbols in specification expressions
of internal procedures.
Differential Revision: https://reviews.llvm.org/D109262
Move the closure of the subset of flang/runtime/*.h header files that
are referenced by source files outside flang/runtime (apart from unit tests)
into a new directory (flang/include/flang/Runtime) so that relative
include paths into ../runtime need not be used.
flang/runtime/pgmath.h.inc is moved to flang/include/flang/Evaluate;
it's not used by the runtime.
Differential Revision: https://reviews.llvm.org/D109107
Flang front end function DumpHexadecimal generates a string
representation of a REAL value. When the value is a NaN, the string
contains a blank, as in "NaN 0x7fc00000". This function is used by
lowering to generate a string that is then passed to llvm Support
function convertFromStringSpecials, which does not expect a blank
in the string. Remove the blank to allow correct recognition of a
NaN by this llvm function.
Note that function DumpHexadecimal is not exercised by the front end
itself. This functionality is only exercised by code that is not yet
present in llvm.
The size of common block should be extended to cover any storage
sequence that are storage associated with the common block via
equivalences (8.10.2.2 point 1 (2)).
In symbol size and offset computation, the size of the common block
was not always extended to cover storage association. It was only done
if the "base symbol of an equivalence group"(*) appeared in a common block
statement. Correct this to cover all cases where a symbol appearing in a
common block statement is storage associated.
(*) the base symbol of an equivalence group is the symbol whose storage
starts first in a storage association (if several symbols starts first,
the base symbol is the last one visited by the algorithm going through
the equivalence sets).
Differential Revision: https://reviews.llvm.org/D109156
Don't create new symbols in FORALL, implied DO, or other
construct scopes when an undeclared name appears; use the
innermost enclosing program unit's scope. This clears up
a pending TODO in name resolution, and also exposes (& fixes)
an unnoticed name resolution problem in a module file test.
Differential Revision: https://reviews.llvm.org/D109095
Ticking off a Parser TODO: Preprocessor::Directive()'s Prescanner
argument should be a reference, not a pointer.
Differential Revision: https://reviews.llvm.org/D109094
The evaluation order for the `|` operator is undefined
(in contrast to the short-circuiting `||` operator). The arguments are
stored in variables to force a specific evaluation order.
A test in D107575 relies on this change.
Reviewed By: kiranchandramohan, klausler
Differential Revision: https://reviews.llvm.org/D108623
The combined initializers constructed from DATA statements and explicit
static initialization in declarations needs to include derived type
component default initializations, overriding those default values
without complaint with values from explicit DATA statement or declaration
initializations when they overlap. This also has to work for objects
with storage association due to EQUIVALENCE. When storage association causes
default component initializations to overlap, emit errors if and only
if the values differ (See Fortran 2018 subclause 19.5.3, esp. paragraph
10).
The f18 front-end has a module that analyzes and converts DATA statements
into equivalent static initializers for objects. For storage-associated
objects, compiler-generated objects are created that overlay the entire
association and fill it with a combined initializer. This "data-to-inits"
module already exists, and this patch is essentially extension and
clean-up of its machinery to complete the job.
Also: emit EQUIVALENCE to module files; mark compiler-created symbols
and *don't* emit those to module files; check non-static EQUIVALENCE
sets for conflicting default component initializations, so lowering
doesn't have to check them or emit diagnostics.
Differential Revision: https://reviews.llvm.org/D109022
It may not be great practice to pass a procedure (or procedure pointer)
with an implicit interface as an actual argument to correspond with
a dummy procedure (pointer), but it's not an error. Change to a
warning, and modify tests accordingly.
Differential Revision: https://reviews.llvm.org/D108932
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.
Differential Revision: https://reviews.llvm.org/D108804
The StringAttr version doesn't need a context, so we can just use the
existing `SymbolRefAttr::get` form. The StringRef version isn't preferred
so we want to encourage people to use StringAttr.
There is an additional form of getSymbolRefAttr that takes a (SymbolTrait
implementing) operation. This should also be moved, but I'll do that as
a separate patch.
Differential Revision: https://reviews.llvm.org/D108922
The double precision KindCode was ignored when building the interface
of specific intrinsic procedures leading to bad semantics checks.
Differential Revision: https://reviews.llvm.org/D108828
ApplyElementwise on character operation was always creating a result
ArrayConstructor with the length of the left operand. This is not
correct for concatenation and SetLength operations.
Compute and thread the length to the spot creating the ArrayConstructor
so that the length is correct for those character operations.
Differential Revision: https://reviews.llvm.org/D108711
The index of an implied DO loop in a DATA statement or array
constructor is defined by Fortran 2018 to have scope over its
implied DO loop. This definition is unfortunate, because it
requires the implied DO loop's bounds expressions to be in the
scope of the index variable. Consequently, in code like
integer, parameter :: j = 5
real, save :: a(5) = [(j, j=1, j)]
the upper bound of the loop is a reference to the index variable,
not the parameter in the enclosing scope.
This patch limits the scope of the index variable to the "body"
of the implied DO loop as one would naturally expect, with a warning.
I would have preferred to make this a hard error, but most Fortran
compilers treat this case as f18 now does. If the standard
were to be fixed, the warning could be made optional.
Differential Revision: https://reviews.llvm.org/D108595
This patch cleans-up the file generation code in Flang's frontend
driver. It improves the layering between
`CompilerInstance::CreateDefaultOutputFile`,
`CompilerInstance::CreateOutputFile` and their various clients.
* Rename `CreateOutputFile` as `CreateOutputFileImpl` and make it
private. This method is an implementation detail.
* Instead of passing an `std::error_code` out parameter into
`CreateOutputFileImpl`, have it return Expected<>. This is a bit shorter
and idiomatic LLVM.
* Make `CreateDefaultOutputFile` (which calls `CreateOutputFileImpl`)
issue an error when file creation fails. The error code from
`CreateOutputFileImpl` is used to generate a meaningful diagnostic
message.
* Remove error reporting from `PrintPreprocessedAction::ExecuteAction`.
This is only for cases when output file generation fails. This is
handled in `CreateDefaultOutputFile` instead (see the previous point).
* Inline `AddOutputFile` into its only caller,
`CreateDefaultOutputFile`.
* Switch from `lvm::buffer_ostream` to `llvm::buffer_unique_ostream>`
for non-seekable output streams. This simplifies the logic in the driver
and was introduced for this very reason in [1]
* Moke sure that the diagnostics from the prescanner when running `-E`
(`PrintPreprocessedAction::ExecuteAction`) are printed before the actual
output is generated.
* Update comments, add test.
NOTE: This patch relands [2]. As suggested by Michael Kruse in the
post-commit/post-revert review, I've added the following:
```
config.errc_messages = "@LLVM_LIT_ERRC_MESSAGES@"
```
in Flang's `lit.site.cfg.py.in`. This way, `%errc_ENOENT` in
output-paths.f90 gets the correct value on Windows as well as on Linux.
[1] https://reviews.llvm.org/D93260
[2] fd21d1e198
Reviewed By: ashermancinelli
Differential Revision: https://reviews.llvm.org/D108390
This reverts commit fd21d1e198.
The test added in this patch [1] is failing on Windows and causing the
Windows BuildBot [2] to fail. I don't see any obvious way to fix this,
so reverting in order to investigate.
[1] llvm-project/flang/test/Driver/output-paths.f90
[2] https://lab.llvm.org/buildbot/#/builders/172/builds/2077
This patch refactors the file generation API in Flang's frontend driver.
It improves the layering between `CreateDefaultOutputFile`,
`CreateOutputFile` (`CompilerInstance` methods) and their various
clients.
List of changes:
* Rename `CreateOutputFile` as `CreateOutputFileImpl` and make it
private. This method is an implementation detail.
* Instead of passing an `std::error_code` out parameter into
`CreateOutputFileImpl`, have it return Expected<>. This is a bit shorter
and more idiomatic LLVM.
* Make `CreateDefaultOutputFile` (which calls `CreateOutputFileImpl`)
issue an error when file creation fails. The error code from
`CreateOutputFileImpl` is used to generate a meaningful diagnostic
message.
* Remove error reporting from `PrintPreprocessedAction::ExecuteAction`.
This is only for cases when output file generation fails. This is
handled in `CreateDefaultOutputFile` instead (see the previous point).
* Inline `AddOutputFile` into its only caller,
`CreateDefaultOutputFile`.
* Switch from `lvm::buffer_ostream` to `llvm::buffer_unique_ostream>`
for non-seekable output streams. This simplifies the logic in the driver
and was introduced for this very reason in [1]
* Moke sure that the diagnostics from the prescanner when running `-E`
(`PrintPreprocessedAction::ExecuteAction`) are printed before the actual
output is generated.
* Update comments, add test.
[1] https://reviews.llvm.org/D93260
Differential Revision: https://reviews.llvm.org/D108390
This patch implements the following check for TARGET construct:
```
OpenMP Version 5.0 Target construct restriction: If a target update,
target data, target enter data, or target exit data construct is
encountered during execution of a target region, the behavior is
unspecified.
```
Also add one test case for the check.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D106165
This patch refactors the `FrontendAction` class. It merely moves code
around so that re-using it is easier. No new functionality is
introduced.
1. Three new member methods are introduced: `RunPrescan`, `RunParse`,
`RunSemanticChecks`.
2. The following free functions are re-implemented as member methods:
* `reportFatalSemanticErrors`
* `reportFatalScanningErrors`
* `reportFatalParsingErrors`
* `reportFatalErrors`
`reportFatalSemanticErrors` is updated to resemble the other error
reporting functions and to make the API more consistent.
3. The `BeginSourceFileAction` methods are simplified and the unused
input argument is deleted.
Differential Revision: https://reviews.llvm.org/D108130
`CompilerInstance` is a more appropriate place for a key component of
the frontend like `Semantics`.
This change opens a path for us to introduce new frontend actions that
will also run semantics, but for which inheriting from
`PrescanAndSemaAction` wouldn't make much sense. For example, for
code-gen actions we plan to introduce a dedicate hierarchy of action
classes.
I've also added a doxyment for `CompilerInstance` to add a bit of
context for this change (and also make future refactoring more informed).
As `CompilerInstance` in Flang has been inspired by its counterpart in
Clang, this comment is roughly a verbatim copy of the comment in Clang
(with some adjustments from me). Credits to Daniel Dunbar for the great
design and the original comment.
Differential Revision: https://reviews.llvm.org/D108035
This patch implements the following check for TEAMS construct:
```
OpenMP Version 5.0 Teams construct restriction: A teams region can
only be strictly nested within the implicit parallel region or a target
region. If a teams construct is nested within a target construct, that
target construct must contain no statements, declarations or directives
outside of the teams construct.
```
Also add one test case for the check.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D106335
This patch implements the following semantic checks for cancellation constructs:
```
OpenMP Version 5.0 Section 2.18.1: CANCEL construct restriction:
If construct-type-clause is taskgroup, the cancel construct must be
closely nested inside a task or a taskloop construct and the cancel
region must be closely nested inside a taskgroup region. If
construct-type-clause is sections, the cancel construct must be closely
nested inside a sections or section construct. Otherwise, the cancel
construct must be closely nested inside an OpenMP construct that matches
the type specified in construct-type-clause of the cancel construct.
OpenMP Version 5.0 Section 2.18.2: CANCELLATION POINT restriction:
A cancellation point construct for which construct-type-clause is
taskgroup must be closely nested inside a task or taskloop construct,
and the cancellation point region must be closely nested inside a
taskgroup region. A cancellation point construct for which
construct-type-clause is sections must be closely nested inside a
sections or section construct. A cancellation point construct for which
construct-type-clause is neither sections nor taskgroup must be closely
nested inside an OpenMP construct that matches the type specified in
construct-type-clause.
```
Also add test cases for the check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D106538
Flang uses positional arguments for `messages::say()`, such as "%1$s" which is only supported in MS Compilers with the `_*printf_p` form of the function. This uses a conditional macro to convert the existing `vsnprintf` used to the one needed in MS-World.
7 tests in D107575 rely on this change.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D107654
Recent work in runtime assignments failed an assertion in fir-dev
while running tests (flang/test/Semantics/defined-ops.f90). This
test didn't fail in llvm-project/main because only the "new" Arm
driver is used now, and that only builds runtime derived type information
tables when some debug dumping options are enabled.
So add a reproducing test case to another test that is run with
-fdebug-dump-symbols, and fix the crash by emitting special procedure
binding information only for type-bound generic ASSIGNMENT(=) bindings
that are relevant to the runtime support library for use in intrinsic
assignment of derived types.
Differential Revision: https://reviews.llvm.org/D107918
Introducing a plugin API and a simple HelloWorld Plugin example.
This patch adds the `-load` and `-plugin` flags to frontend driver and
the code around using custom frontend actions from within a plugin
shared library object.
It also adds to the Driver-help test to check the help option with the
updated driver flags.
Additionally, the patch creates a plugin-example test to check the
HelloWorld plugin example runs correctly. As part of this, a new CMake
flag (`FLANG_BUILD_EXAMPLES`) is added to allow the example to be built
and for the test to run.
This Plugin API has only been tested on Linux.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D106137
When the upper bound is less than the lower bound, the extent is zero. This is
specified in section 8.5.8.2, paragraph 3.
Note that similar problems exist in the lowering code. This change only fixes
the problem for the front end.
I also added a test.
Differential Revision: https://reviews.llvm.org/D107832
https://reviews.llvm.org/D105464 did not correctly cover the case
where the symbol from the host procedure is use associated. Outside
of the mis-parsed ArrayRef case, flang was also creating a symbol with
HostAssociated details inside the internal procedure (pointing to the
use associated symbol in the host). That is what lowering expects.
This patch ensures the same logic is applied in the mis-parsed array-ref name
resolution (and the pointer target name resolution).
Differential Revision: https://reviews.llvm.org/D107759
Define an API for, and implement, runtime support for arbitrary
assignment of one descriptor's data to another, with full support for
(re)allocation of allocatables with finalization when necessary,
user-defined derived type assignment TBP calls, and intrinsic (default)
componentwise assignment of derived type instances with allocation of
automatic components. Also clean up API and implementation of
finalization/destruction using knowledge gained while studying
edge cases for assignment in the 2018 standard.
The look-up procedure for special procedure bindings in derived
types has been optimized from O(N) to O(1) since it will probably
matter more. This required some analysis in runtime derived type
description table construction in semantics and some changes to the
table schemata.
Executable Fortran tests have been developed; they'll be added
to the test base once they can be lowered and run by f18.
Differential Revision: https://reviews.llvm.org/D107678
This patch removes `f18`, a.k.a. the old driver. It is being replaced
with the new driver, `flang-new`, which has reached feature parity with
`f18` a while ago. This was discussed in [1] and also in [2].
With this change, `FLANG_BUILD_NEW_DRIVER` is no longer needed and is
also deleted. This means that we are making the dependency on Clang permanent
(i.e. it cannot be disabled with a CMake flag).
LIT set-up is updated accordingly. All references to `f18` or `f18.cpp`
are either updated or removed.
The `F18_FC` variable from the `flang` bash script is replaced with
`FLANG_FC`. The former is still supported for backwards compatibility.
[1] https://lists.llvm.org/pipermail/flang-dev/2021-June/000742.html
[2] https://reviews.llvm.org/D103177
Differential Revision: https://reviews.llvm.org/D105811
For boolean options, e.g. `-fxor-operator`/`-fno-xor-operator`, we ought
to be using TableGen multi-classes. This way, we only have to write one
definition to have both forms auto-generated. This patch refactors all
of Flang's boolean options to use two new multi-classes:
`OptInFC1FFOption` and `OptOutFC1FFOption`. These multi-classes are
based on `OptInFFOption`/`OptOutFFOption`, respectively. I've also
simplified the processing of the updated options in
CompilerInvocation.cpp.
With the new approach, "empty" help text (i.e. no `HelpText`) is now
replaced with an empty string (i.e. HelpText<"">). When running
flang-new --help, that's considered as non-empty help messages, which is
then printed (that's controlled by `printHelp` from
llvm/lib/Option/OptTable.cpp). This means that with this patch,
flang-new --help will start printing e.g. -fno-backslash, even though
there is no actual help text to print for this option (apart from the
empty string ""). Tests are updated accordingly.
Note that with this patch, both `-fxor-operator` and `-fno-xor-operator`
(and other boolean options refactored here) remain available in
`flang-new` and `flang-new -fc1`. In this respect, nothing changes. In a
forthcoming patch, I will refine this so that `flang-new -fc1` only
accepts `-ffoo` (`OptInFC1FFOption`) or `-fno-foo` (`OptOutCC1FFOption`).
For clarity, `OptInFFOption`/`OptOutFFOption` are renamed as
`OptInCC1FFOption`/`OptOutCC1FFOption`, respectively. Otherwise, this is
an NFC from Clang's perspective.
Differential Revision: https://reviews.llvm.org/D105881
The algorithm for Fw.d output will drive binary to decimal conversion for
an initial fixed number of digits, then adjust that number based on the
result's exposent. For value close to a power of ten, this adjustment
process wouldn't terminate; e.g., formatting 9.999 as F10.2 would start
with 1e2, boost the digits to 2, get 9.99e1, decrease the digits, and loop.
Solve by refusing to boost the digits a second time.
Differential Revision: https://reviews.llvm.org/D107490
Like the similar legacy extension FLOAT(), DFLOAT() represents a
conversion from default integer to DOUBLE PRECISION. Rewrite
into a conversion operation.
Differential Revision: https://reviews.llvm.org/D107489
Dummy procedures can be defined as subprograms with explicit
interfaces, e.g.
subroutine subr(dummy)
interface
subroutine dummy(x)
real :: x
end subroutine
end interface
! ...
end subroutine
but the symbol table had no means of marking such symbols as dummy
arguments, so predicates like IsDummy(dummy) would fail. Add an
isDummy_ flag to SubprogramNameDetails, analogous to the corresponding
flag in EntityDetails, and set/test it as needed.
Differential Revision: https://reviews.llvm.org/D106697
The result expression for the analysis of a Component is not (longer)
valid in the expression traversal framework used by IsSimplyContiguousHelper
now that it has a tri-state result. Fix so that any result of
analyzing the component symbol is required to be true, not just
present.
Differential Revision: https://reviews.llvm.org/D106693
Rename the current -E option to "-E -Xflang -fno-reformat".
Add a new Parsing::EmitPreprocessedSource() routine to convert the
cooked character stream output of the prescanner back to something
more closely resembling output from a traditional preprocessor;
call this new routine when -E appears.
The new -E output is suitable for use as fixed form Fortran source to
compilation by (one hopes) any Fortran compiler. If the original
top-level source file had been free form source, the output will be
suitable for use as free form source as well; otherwise there may be
diagnostics about missing spaces if they were indeed absent in the
original fixed form source.
Unless the -P option appears, #line directives are interspersed
with the output (but be advised, f18 will ignore these if presented
with them in a later compilation).
An effort has been made to preserve original alphabetic character case
and source indentation.
Add -P and -fno-reformat to the new drivers.
Tweak test options to avoid confusion with prior -E output; use
-fno-reformat where needed, but prefer to keep -E, sometimes
in concert with -P, on most, updating expected results accordingly.
Differential Revision: https://reviews.llvm.org/D106727
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
According to C7109, "A boz-literal-constant shall appear only as a
data-stmt-constant in a DATA statement, or where explicitly allowed in
16.9 as an actual argument of an intrinsic procedure." This change
enforces that constraint for output list items.
I also added a general interface to determine if an expression is a BOZ
literal constant and changed all of the places I could find where it
could be used.
I also added a test.
This change stemmed from the following issue --
https://gitlab-master.nvidia.com/fortran/f18-stage/issues/108
Differential Revision: https://reviews.llvm.org/D106893
Since BOZ literal arguments are typeless, we cannot know how to pass them as
actual arguments to procedures with implicit interfaces. This change avoids
the problem by emitting an error message in such situations.
This change stemmed from the following issue --
https://github.com/flang-compiler/f18-llvm-project/issues/794
Differential Revision: https://reviews.llvm.org/D106831
Use derived type information tables to drive default component
initialization (when needed), component destruction, and calls to
final subroutines. Perform these operations automatically for
ALLOCATE()/DEALLOCATE() APIs for allocatables, automatics, and
pointers. Add APIs for use in lowering to perform these operations
for non-allocatable/automatic non-pointer variables.
Data pointer component initialization supports arbitrary constant
designators, a F'2008 feature, which may be a first for Fortran
implementations.
Differential Revision: https://reviews.llvm.org/D106297
The following semantic check is removed in OpenMP Version 5.0:
```
Taskloop simd construct restrictions: No reduction clause can be specified.
```
Also fix several typos.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D105874
Name resolution is always creating symbols with HostAssocDetails
for host variable names inside internal procedures. This helps lowering
identifying and dealing with such variables inside internal procedures.
However, the case where the variable appears in an ArrayRef mis-parsed
as a FunctionRef goes through a different name resolution path that did
not create such HostAssocDetails when needed. Pointer assignment RHS
are also skipping this path.
Add the logic to create HostAssocDetails for host symbols inisde internal
procedures that appear in mis-parsed ArrayRef or in pointer assignment RHS.
Differential Revision: https://reviews.llvm.org/D105464
Until now, `f18` would:
1. Use Flang to unparse the input files
2. Call an external Fortran compiler to compile the unparsed source
files (generated in step 1)
With this patch, `f18` will stop after unparsing the input source files,
i.e. step 1 above. The `flang` bash script will take care of step 2,
i.e. calling an external Fortran compiler driver to compile them. This
way:
* the functionality of `f18` is reduced - it will only drive Flang (as
opposed to delegating code-generation to an external tool on top of
this)
* we will able to switch between `f18` and `flang-new` for unparsing before
an external Fortran compiler is called for code-generation
The updated `flang` bash script needs to specify the output file when
using the `-fdebug-unparse` action. Both `f18` and `flang-new` have been
updated accordingly.
These changes were discussed in [1] as a requirement for replacing `f18`
with `flang-new`.
[1] https://lists.llvm.org/pipermail/flang-dev/2021-April/000677.html
Differential Revision: https://reviews.llvm.org/D103177
With derived type description tables now available to the
runtime library, it is possible to implement the concept
of "child" I/O statements in the runtime and use them to
convert instances of derived type I/O data transfers into
calls to user-defined subroutines when they have been specified
for a type. (See Fortran 2018, subclauses 12.6.4.8 & 13.7.6).
- Support formatted, list-directed, and NAMELIST
transfers to internal parent units; support these, and unformatted
transfers, for external parent units.
- Support nested child defined derived type I/O.
- Parse DT'foo'(v-list) FORMAT data edit descriptors and passes
their strings &/or v-list values as arguments to the defined
formatted I/O routines.
- Fix problems with this feature encountered in semantics and
FORMAT valiation during development and end-to-end testing.
- Convert typeInfo::SpecialBinding from a struct to a class
after adding a member function.
Differential Revision: https://reviews.llvm.org/D104930
There are situations where the arguments of intrinsics must be
conformable, which is defined in section 3.36. This means they must
have "the same shape, or one being an array and the other being scalar".
But the check we were actually making was that their ranks were the same.
This change fixes that and adds a test for the UNPACK intrinsic, where
the FIELD argument "shall be conformable with MASK".
Differential Revision: https://reviews.llvm.org/D104936
A recent change that extended semantic analysis for actual arguments
that associate with procedure dummy arguments exposed some bugs in
regression test suites due to points of confusion in symbol table
handling in situations where a generic interface contains a specific
procedure of the same name. When passing that name as an actual
argument, for example, it's necessary to take this possibility into
account because the symbol for the generic interface shadows the
symbol of the same name for the specific procedure, which is
what needs to be checked. So add a small utility that bypasses
the symbol for a generic interface in this case, and use it
where needed.
Differential Revision: https://reviews.llvm.org/D104929
This patch adds a new option for the new Flang driver:
`-fno-analyzed-objects-for-unparse`. The semantics are similar to
`-funparse-typed-exprs-to-f18-fc` from `f18`. For consistency, the
latter is replaced with `-fno-analyzed-objects-for-unparse`.
The new option controls the behaviour of the unparser (i.e. the action
corresponding to `-fdebug-unparse`). The default behaviour is to use the
analyzed objects when unparsing. The new flag can be used to turn this
off, so that the original parse-tree objects are used. The analyzed
objects are generated during the semantic checks [1].
This patch also updates the semantics of
`-fno-analyzed-objects-for-unparse`/`-funparse-typed-exprs-to-f18-fc`
in `f18`, so that this flag is always taken into account when `Unparse`
is used (this way the semantics in `f18` and `flang-new` are identical).
The added test file is based on example from Peter Steinfeld.
[1]
https://github.com/llvm/llvm-project/blob/main/flang/docs/Semantics.md
Differential Revision: https://reviews.llvm.org/D103612
Work around two problems with GCC 7.3.
One is its inability to implement "constexpr operator=(...) = default;"
in a class with a std::optional<> component; another is a legitimate-
looking warning about an unused variable.
Differential Revision: https://reviews.llvm.org/D104731
Refactor the recently-implemented MAXVAL/MINVAL folding so
that the parts that can be used to implement other reduction
transformational intrinsic function folding are exposed.
Use them to implement folding of IALL, IANY, IPARITY,
SUM. and PRODUCT. Replace the folding of ALL & ANY to
use the new infrastructure and become able to handle DIM=
arguments.
Differential Revision: https://reviews.llvm.org/D104562
This patch adds the following nesting check for `barrier` constructs:
```
A barrier region may not be closely nested inside a worksharing, loop, task, taskloop, critical, ordered, atomic, or master region.
```
Also adds a test case for the check,
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D99888
This is *not* user-defined derived type I/O, but rather Fortran's
built-in capabilities for using derived type data in I/O lists
and NAMELIST groups.
This feature depends on having the derived type description tables
that are created by Semantics available, passed through compilation
as initialized static objects to which pointers can be targeted
in the descriptors of I/O list items and NAMELIST groups.
NAMELIST processing now handles component references on input
(e.g., "&GROUP x%component = 123 /").
The C++ perspectives of the derived type information records
were transformed into proper classes when it was necessary to add
member functions to them.
The code in Semantics that generates derived type information
was changed to emit derived type components in component order,
not alphabetic order.
Differential Revision: https://reviews.llvm.org/D104485
Do not use ultimate symbols in DescriptorInquiry. Using the ultimate
symbol may lead to issues later for at least two reasons:
- The original symbols may have volatile/asynchronous attributes that
the ultimate may not have. Later phases working on the DescriptorInquiry
would then not apply potential care required by these attributes.
- HostAssociatedDetails symbols are used by OpenMP for symbols with
special OpenMP attributes inside OpenMP region (e.g variables with
private attribute), so it is very important to preserve this
aspect in the DescriptorInquiry, that would otherwise apply on the
symbol outside of the region.
Differential Revision: https://reviews.llvm.org/D104385
When a function is called in a specification expression, it must be
sufficiently defined, and cannot be a recursive call (10.1.11(5)).
The best fix for this is to change the contract for the procedure
characterization infrastructure to catch and report such errors,
and to guarantee that it does emit errors on failed characterizations.
Some call sites were adjusted to avoid cascades.
Differential Revision: https://reviews.llvm.org/D104330
Recent code for folding MINVAL() didn't allow for architectures
whose C/C++ char type is unsigned, so the value of the maximum
Fortran character was incorrect. This was caught by the
folding20.f90 test. The fix is to avoid numeric_limits<> and
use hard values for max signed integers of various character kinds.
Pushing into llvm-project/main to restore ARM/POWER buildbots.
Implement constant folding for the reduction transformational
intrinsic functions MAXVAL and MINVAL.
In anticipation of more folding work to follow, with (I hope)
some common infrastructure, these two have been implemented in a
new header file.
Differential Revision: https://reviews.llvm.org/D104337
When a program attempts to put something like a subprogram
into an array constructor, emit an error rather than crashing.
Differential Revision: https://reviews.llvm.org/D104336
Flang diverges from the llvm coding style in that it requires braces
around the bodies of if/while/etc statements, even when the body is
a single statement.
This commit adds the readability-braces-around-statements check to
flang's clang-tidy config file. Hopefully the premerge bots will pick it
up and report violations in Phabricator.
We also explicitly disable the check in the directories corresponding to
the Lower and Optimizer libraries, which rely heavily on mlir and llvm
and therefore follow their coding style. Likewise for the tools
directory.
We also fix any outstanding violations in the runtime and in
lib/Semantics.
Differential Revision: https://reviews.llvm.org/D104100
The new option will run the semantic checks and then dump the parse tree
and all the symbols. This is equivalent to running the driver twice,
once with `-fdebug-dump-parse-tree` and then with
the `-fdebug-dump-symbols` action flag.
Currently we wouldn't be able to achieve the same by simply running:
```
flang-new -fc1 -fdebug-dump-parse-tree -fdebug-dump-symbols <input-file>
```
That's because the new driver will only run one frontend action per
invocation (both of the flags used here are action flags). Diverging
from this design would lead to costly compromises and it's best avoided.
We may want to consider re-designing our debugging actions (and action
options) in the future so that there's more code re-use. For now, I'm
focusing on making sure that we support all the major cases requested by
our users.
Differential Revision: https://reviews.llvm.org/D104305
I added the only check that wasn't already tested along with tests for
many valid and invalid arguments.
Differential Revision: https://reviews.llvm.org/D104318
This patch adds the 4th Fortran specific semantic check for the OpenMP
allocate directive: "If a list item has the SAVE attribute, is a common
block name, or is declared in the scope of a module, then only predefined
memory allocator parameters can be used in the allocator clause".
Code in this patch was based on code from https://reviews.llvm.org/D93549/new/.
Differential Revision: https://reviews.llvm.org/D102400
It's possible to have several USE statements for the same module that
have different mixes of rename clauses and ONLY clauses. The presence
of a rename cause has the effect of hiding a previously associated name,
and the presence of an ONLY clause forces the name to be visible even in
the presence of a rename.
I fixed this by keeping track of the names that appear on rename and ONLY
clauses. Then, when processing the USE association of a name, I check to see
if it previously appeared in a rename clause and not in a USE clause. If so, I
remove its USE associated symbol. Also, when USE associating all of the names
in a module, I do not USE associate names that have appeared in rename clauses.
I also added a test.
Differential Revision: https://reviews.llvm.org/D104130
Fix Flang build after addition of a new OpenMP clauses for a Clang
patch (D99459). Flang is using TableGen to generation the declaration
of clause checks and the new clause was missing a definiton.
In the interests of disabling misc-no-recursion across LLVM (this seems
like a stylistic choice that is not consistent with LLVM's
style/development approach) this NFC preliminary change adjusts all the
.clang-tidy files to inherit from their parents as much as possible.
This change specifically preserves all the quirks of the current configs
in order to make it easier to review as NFC.
I validatad the change is NFC as follows:
for X in `cat ../files.txt`;
do
mkdir -p ../tmp/$(dirname $X)
touch $(dirname $X)/blaikie.cpp
clang-tidy -dump-config $(dirname $X)/blaikie.cpp > ../tmp/$(dirname $X)/after
rm $(dirname $X)/blaikie.cpp
done
(similarly for the "before" state, without this patch applied)
for X in `cat ../files.txt`;
do
echo $X
diff \
../tmp/$(dirname $X)/before \
<(cat ../tmp/$(dirname $X)/after \
| sed -e "s/,readability-identifier-naming\(.*\),-readability-identifier-naming/\1/" \
| sed -e "s/,-llvm-include-order\(.*\),llvm-include-order/\1/" \
| sed -e "s/,-misc-no-recursion\(.*\),misc-no-recursion/\1/" \
| sed -e "s/,-clang-diagnostic-\*\(.*\),clang-diagnostic-\*/\1/")
done
(using sed to strip some add/remove pairs to reduce the diff and make it easier to read)
The resulting report is:
.clang-tidy
clang/.clang-tidy
2c2
< Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-readability-identifier-naming,-misc-no-recursion'
---
> Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-misc-no-recursion'
compiler-rt/.clang-tidy
2c2
< Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,-llvm-header-guard,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes'
---
> Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-llvm-header-guard'
flang/.clang-tidy
2c2
< Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,llvm-*,-llvm-include-order,misc-*,-misc-no-recursion,-misc-unused-parameters,-misc-non-private-member-variables-in-classes'
---
> Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-llvm-include-order,-misc-no-recursion'
flang/include/flang/Lower/.clang-tidy
flang/include/flang/Optimizer/.clang-tidy
flang/lib/Lower/.clang-tidy
flang/lib/Optimizer/.clang-tidy
lld/.clang-tidy
lldb/.clang-tidy
llvm/tools/split-file/.clang-tidy
mlir/.clang-tidy
The `clang/.clang-tidy` change is a no-op, disabling an option that was never enabled.
The compiler-rt and flang changes are no-op reorderings of the same flags.
(side note, the .clang-tidy file in parallel-libs is broken and crashes
clang-tidy because it uses "lowerCase" as the style instead of "lower_case" -
so I'll deal with that separately)
Differential Revision: https://reviews.llvm.org/D103842
Adding the `-init-only` option and corresponding frontend action to
generate a diagnostic.
`-init-only` vs `-test-io`:
`-init-only` ignores the input (it never calls the prescanner)
`-test-io` is similar to `-init-only`, but does read and print the input
without calling the prescanner.
This patch also adds a Driver test to check this action.
Reviewed By: awarzynski, AMDChirag
Differential Revision: https://reviews.llvm.org/D102849
It's possible to specify refer to an undefined derived type as the type of a
component of another derived type and then never define the type of the
component. We were not detecting this situation. To fix this, I
changed the value of isForwardReferenced_ in the symbol's
DerivedTypeDetails and checked for it when performing other derived type
checks.
I also had to record the fact that error messages were previously
emitted for the same problem in some cases so that I could avoid
duplicate messages.
I also added a test.
Differential Revision: https://reviews.llvm.org/D103714
Implement the following semantic check:
"A list item may not appear in a linear clause, unless it is the loop iteration variable."
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100224
To ensure that errors are emitted by CheckConformance and
its callers in all situations, it's necessary for the returned result
of that function to distinguish between three possible
outcomes: the arrays are known to conform at compilation time,
the arrays are known to not conform (and a message has been
produced), and an indeterminate result in which is not possible
to determine conformance. So convert CheckConformance's
result into an optional<bool>, and convert its confusing
Boolean flag arguments into a bit-set of named flags too.
Differential Revision: https://reviews.llvm.org/D103654
With this patch, the following invocation of the frontend driver will
return an error:
```
flang-new -fc1 input-file.f90 -o
```
Similar logic applies to other options that require arguments.
Similar checks are already available in the compiler driver, flang-new
(that's implemented in clangDriver).
Differential Revision: https://reviews.llvm.org/D103554
This option is supported in `f18`, but not yet available in `flang-new`.
It is required in order to call `flang-new` from the `flang` bash
script.
Differential Revision: https://reviews.llvm.org/D103613
A recent change was made in https://reviews.llvm.org/D101482 to cope
with kind parameters. It had the side effect of generating some type
info symbols inside derived type scopes. Derived type scope symbols
are meant for components, and other/later compilation phases might
choke when finding compiler generated symbols there that are not
components.
This patch preserves the fix from D101482 while still generating the
symbols outside of derived type scopes.
Differential Revision: https://reviews.llvm.org/D103621
When a subroutine or function symbol is defined in an INTERFACE
block, it's okay if a symbol of the same name appears in a
scope between the global scope and the scope of the INTERFACE.
Differential Revision: https://reviews.llvm.org/D103580
Add some missing error messages, and permit the appearance
of EntityDetails symbols in dummy argument type characterization.
Differential Revision: https://reviews.llvm.org/D103576
When a procedure pointer with no interface is called by a
function reference, complain about the lack.
Differential Revision: https://reviews.llvm.org/D103573
In something like "ASSOCIATE(X=>T(1))", the "T(1)" is parsed
as a Variable because it looks like a function reference or
array reference; if it turns out to be a structure constructor,
which is something we can't know until we're able to attempt
generic interface resolution in semantics, the parse tree needs
to be fixed up by replacing the Variable with an Expr.
The compiler could already do this for putative function references
encapsulated as Exprs, so this patch moves some code around and
adds parser::Selector to the overloads of expression analysis.
Differential Revision: https://reviews.llvm.org/D103572
The constexpr-capable class evaluate::DynamicType represented
CHARACTER length only with a nullable pointer into the declared
parameters of types in the symbol table, which works fine for
anything with a declaration but turns out to not suffice to
describe the results of the ACHAR() and CHAR() intrinsic
functions. So extend DynamicType to also accommodate known
constant CHARACTER lengths, too; use them for ACHAR & CHAR;
clean up several use sites and fix regressions found in test.
Differential Revision: https://reviews.llvm.org/D103571
A procedure pointer is allowed to name a specific intrinsic function
from F'2018 table 16.2 as its interface, but not other intrinsic
procedures. Catch this error, and thereby also fix a crash resulting
from a failure later in compilation from failed characteristics;
while here, also catch the similar error with initializers.
Differential Revision: https://reviews.llvm.org/D103570
As a benign extension common to other Fortran compilers,
accept BOZ literals in array constructors w/o explicit
types, treating them as integers.
Differential Revision: https://reviews.llvm.org/D103569
The code for folding calls to the intrinsic function CMPLX was
incorrectly dependent on the number of arguments to distinguish its
two cases (conversion from one kind of complex to another, and
composition of a complex value from real & imaginary parts).
This was wrong since the optional KIND= argument has already been
taken into account by intrinsic processing; instead, the type of
the first argument should decide the issue.
Differential Revision: https://reviews.llvm.org/D103568
In error recovery situations, the mappings from source locations
to scopes were failing in a way that tripped some asserts.
Specifically, FindPureProcedureContaining() wasn't coping well
when starting at the global scope. (And since the global scope
no longer has a source range, clean up the Semantics constructor
to avoid confusion.)
Differential Revision: https://reviews.llvm.org/D103567
It's possible to specify defined input/output procedures either as a
type-bound procedure of a derived type or as a defined-io-generic-spec. This
means that you can specify the same procedure in both mechanisms, which does
not cause problems. Alternatively, you can specify two different procedures to
be the defined input/output procedure for the same derived type. This is an
error. This change catches this error. The situation is slightly complicated
by parameterized derived types. Types with the same value for a KIND parameter
are treated as the same type while types with different KIND parameters are
treated as different types.
I implemented this check by adding a vector to keep track of which defined
input/output procedures had been seen for which derived types along with the
kind of procedure (read vs write and formatted vs unformatted). I also added
tests for non-parameterized types and types parameterized by KIND and LEN type
parameters.
I also removed an erroneous check from the code that creates runtime type
information.
Differential Revision: https://reviews.llvm.org/D103560
Each var argument to an attach or detach clause must be a
Fortran variable or array with the pointer or allocatable attribute.
This patch enforce this restruction.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D103279
This patch adds the following Fortran specific semantic checks for the OpenMP
Allocate directive.
1) A type parameter inquiry cannot appear in an ALLOCATE directive.
2) List items specified in the ALLOCATE directive must not have the ALLOCATABLE
attribute unless the directive is associated with an ALLOCATE statement.
Co-authored-by: Irina Dobrescu <irina.dobrescu@arm.com>
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102061
Defined input/output procedures are specified in 12.6.4.8. There are different
versions for read versus write and formatted versus unformatted, but they all
share the same basic set of dummy arguments.
I added several checking functions to check-declarations.cpp along with a test.
In the process of implementing this, I noticed and fixed a typo in
.../lib/Evaluate/characteristics.cpp.
Differential Revision: https://reviews.llvm.org/D103045
A recent fix for problems with ENTRY statement handling didn't
get the case of a procedure dummy argument on an ENTRY statement
in an executable part right; the code presumed that those dummy
arguments would be objects, not entities that might be objects or
procedures. Fix.
Differential Revision: https://reviews.llvm.org/D103098
Dummy arguments of ENTRY statements in execution parts were
not being created as objects, nor were they being implicitly
typed.
When the symbol corresponding to an alternate ENTRY point
already exists (by that name) due to having been referenced
in an earlier call, name resolution used to delete the extant
symbol. This isn't the right thing to do -- the extant
symbol will be pointed to by parser::Name nodes in the parse
tree while no longer being part of any Scope.
Differential Review: https://reviews.llvm.org/D102948
This patch implements the following semantic check:
```
A master region may not be closely nested inside a work-sharing, loop, atomic, task, or taskloop region.
```
Adds a test case and also modifies a couple of existing test cases to include the check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100228
Add overloads to AsGenericExpr() in Evaluate/tools.h to take care
of wrapping an untyped DataRef or bare Symbol in a typed Designator
wrapped up in a generic Expr<SomeType>. Use the new overloads to
replace a few instances of code that was calling TypedWrapper<>()
with a dynamic type.
This new tool will be useful in lowering to drive some code that
works with typed expressions (viz., list-directed I/O list items)
when starting with only a bare Symbol (viz., NAMELIST).
Differential Revision: https://reviews.llvm.org/D102352
We sometimes unroll an ac-implied-do of an array constructor into a flat list
of values. We then re-analyze the array constructor that contains the
resulting list of expressions. Such a list may or may not contain errors.
But when processing an array constructor with an unrolled ac-implied-do, the
compiler was building an expression to represent the extent of the resulting
array constructor containing the list of values. The number of operands
in this extent expression was based on the number of elements in the
unrolled list of values. For very large lists, this created an
expression so large that it could not be evaluated by the compiler
without overflowing the stack.
I fixed this by continuously folding the extent expression as each operand is
added to it. I added the test .../flang/test/Semantics/array-constr-big.f90
that will cause the compiler to seg fault without this change.
Also, when the unrolled ac-implied-do expression contains errors, we were
repeating the same error message referencing the same source line for every
instance of the erroneous expression in the unrolled list. This potentially
resulted in a very long list of messages for a single error in the source code.
I fixed this by comparing the message being emitted to the previously emitted
message. If they are the same, I do not emit the message. This change is also
tested by the new test array-constr-big.f90.
Several of the existing tests had duplicate error messages for the same source
line, and this change caused differences in their output. So I adjusted the
tests to match the new message emitting behavior.
Differential Revision: https://reviews.llvm.org/D102210
Add InputNamelist and OutputNamelist as I/O data transfer APIs
to be used with internal & external list-directed I/O; delete the
needless original namelist-specific Begin... calls.
Implement NAMELIST output and input; add basic tests.
Differential Revision: https://reviews.llvm.org/D101931
When producing the runtime type information for a component of a derived type
that had a LEN type parameter, we were not allowing a KIND parameter of the
derived type. This was causing one of the NAG correctness tests to fail
(.../hibiya/d5.f90).
I added a test to our own test suite to check for this.
Also, I fixed a typo in .../module/__fortran_type_info.f90.
I allowed KIND type parameters to be used for the declarations of components
that use LEN parameters by constant folding the value of the LEN parameter. To
make the constant folding work, I had to put the semantics::DerivedTypeSpec of
the associated derived type into the folding context. To get this
semantics::DerivedTypeSpec, I changed the value of the semantics::Scope object
that was passed to DescribeComponent() to be the derived type scope rather than
the containing non-derived type scope.
This scope change, in turn, caused differences in the symbol table output that
is checked in typeinfo01.f90. Most of these differences were in the order that
the symbols appeared in the dump. But one of them changed one of the values
from "CHARACTER(2_8,1)" to "CHARACTER(1_8,1)". I'm not sure if these changes
are significant. Please verify that the results of this test are still valid.
Also, I wonder if there are other situations in this code where we should be
folding constants. For example, what if the field of a component has a
component whose type is a PDT with a LEN type parameter, and the component's
declaration depends on the KIND type parameter of the current PDT. Here's an
example:
type string(stringkind)
integer,kind :: stringkind
character(stringkind) :: value
end type string
type outer(kindparam)
integer,kind :: kindparam
type(string(kindparam)) :: field
end type outer
I don't understand the code or what it's trying to accomplish well enough to
figure out if such cases are correctly handled by my new code.
Differential Revision: https://reviews.llvm.org/D101482
We were not correctly handling structure constructors that had forward
references to parameterized derived types. I harvested the code that checks
for forward references that was used during analysis of function call
expressions and called it from there and also called it during the
analysis of structure constructors.
I also added a test that will produce an internal error without this change.
Differential Revision: https://reviews.llvm.org/D101330
We were not checking that attributes that are supposed to be specific to
dummy arguments were not being used for local entities. I added the checks
along with tests for them.
After implementing these new checks, I found that one of the tests in
separate-mp02.f90 was erroneous, and I fixed it.
Differential Revision: https://reviews.llvm.org/D101126
When generating output for `-fdebug-dump-symbols`, make sure that
BuildRuntimeDerivedTypeTables is also run. This change is needed in
order to make the implementation of `-fdebug-dump-symbols` in
`flang-new` consistent with `f18`. It also allows us to port more tests
to use the new driver whenever it is enabled.
Differential Revision: https://reviews.llvm.org/D100649
Andrezj W. @ Arm discovered that the runtime derived type table
building code in semantics was detecting fatal errors in the tests
that the f18 driver wasn't printing. This patch fixes f18 so that
these messages are printed; however, the messages were not valid user
errors, and the rest of this patch fixes them up.
There were two sources of the bogus errors. One was that the runtime
derived type information table builder was calculating the shapes of
allocatable and pointer array components in derived types, and then
complaining that they weren't constant or LEN parameter values, which
of course they couldn't be since they have to have deferred shapes
and those bounds were expressions like LBOUND(component,dim=1).
The second was that f18 was forwarding the actual LEN type parameter
expressions of a type instantiation too far into the uses of those
parameters in various expressions in the declarations of components;
when an actual LEN type parameter is not a constant value, it needs
to remain a "bare" type parameter inquiry so that it will be lowered
to a descriptor inquiry and acquire a captured expression value.
Fixing this up properly involved: moving some code into new utility
function templates in Evaluate/tools.h, tweaking the rewriting of
conversions in expression folding to elide needless integer kind
conversions of type parameter inquiries, making type parameter
inquiry folding *not* replace bare LEN type parameters with
non-constant actual parameter values, and cleaning up some
altered test results.
Differential Revision: https://reviews.llvm.org/D101001
This patch adds semantic checks for the General Restrictions of the
Allocate Directive.
Since the requires directive is not yet implemented in Flang, the
restriction:
```
allocate directives that appear in a target region must
specify an allocator clause unless a requires directive with the
dynamic_allocators clause is present in the same compilation unit
```
will need to be updated at a later time.
A different patch will be made with the Fortran specific restrictions of
this directive.
I have used the code from https://reviews.llvm.org/D89395 for the
CheckObjectListStructure function.
Co-authored-by: Isaac Perry <isaac.perry@arm.com>
Reviewed By: clementval, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91159
We were erroneously not taking into account the constant values of LEN type
parameters of parameterized derived types when checking for argument
compatibility. The required checks are identical to those for assignment
compatibility. Since argument compatibility is checked in .../lib/Evaluate and
assignment compatibility is checked in .../lib/Semantics, I moved the common
code into .../lib/Evaluate/tools.cpp and changed the assignment compatibility
checking code to call it.
After implementing these new checks, tests in resolve53.f90 were failing
because the tests were erroneous. I fixed these tests and added new tests
to call03.f90 to test argument passing of parameterized derived types more
completely.
Differential Revision: https://reviews.llvm.org/D100989
This patch adds `-fget-definition` to `flang-new`. The semantics of this
option are identical in both drivers. The error message in the
"throwaway" driver is updated so that it matches the one from
`flang-new` (which is auto-generated and cannot be changed easily).
Tests are updated accordingly. A dedicated test for error handling was
added: get-definition.f90 (for the sake of simplicity,
getdefinition01.f90 no longer tests for errors).
The `ParseFrontendArgs` function is updated so that it can return
errors. This change is required in order to report invalid values
following `-fget-definition`.
The actual implementation of `GetDefinitionAction::ExecuteAction()` was
extracted from f18.cpp (i.e. the bit that deals with
`-fget-definition`).
Depends on: https://reviews.llvm.org/D100556
Differential Revision: https://reviews.llvm.org/D100558
We were erroneously emitting error messages for assignments of derived types
where the associated objects were instantiated with non-constant LEN type
parameters.
I fixed this by adding the member function MightBeAssignmentCompatibleWith() to
the class DerivedTypeSpec and calling it to determine whether it's possible
that objects of parameterized derived types can be assigned to each other. Its
implementation first compares the uninstantiated values of the types. If they
are equal, it then compares the values of the constant instantiated type
parameters.
I added tests to assign04.f90 to exercise this new code.
Differential Revision: https://reviews.llvm.org/D100868
This is just a small update that makes sure that errors arising from
parsing command-line options are captured more visibly. Also, all
parsing methods will now consistently return either a bool ("may fail")
or void ("never fails").
An instance of `InputKind` coming from `-x` is added to
`FrontendOptions` rather then being returned from `ParseFrontendArgs`.
It's currently not used, but we will require it shortly. In particular,
once code-generation is available we will use it to differentiate
between LLVM IR and Fortran input. `FrontendOptions` is a very suitable
place to keep it.
This changes don't affect the error reporting in the driver. In this
respect these are non-functional-changes. However, it will simplify
things in the forthcoming patches in which we may need a better error
tracking/recovery mechanism.
Differential Revision: https://reviews.llvm.org/D100556
An empty NAME= should mean that there is no C binding, not the
binding that would result from BIND(C) without a NAME=.
See 18.10.2p2.
Differential Revision: https://reviews.llvm.org/D100494
We were not instantiating procedure pointer components. If the instantiation
contained errors, we were not reporting them. This resulted in internal errors
in later processing.
I fixed this by adding code in .../lib/Semantics/type.cpp in
InstantiateComponent() to handle a component with ProcEntityDetails. I also
added several tests for various good and bad instantiations of procedure
pointer components.
Differential Revision: https://reviews.llvm.org/D100341
F18 supports the standard intrinsic function SELECTED_REAL_KIND
but not its synonym in the standard module IEEE_ARITHMETIC
named IEEE_SELECTED_REAL_KIND until this patch.
Differential Revision: https://reviews.llvm.org/D100066
For pernicious test cases with explicit non-constant actual
type parameter expressions in components, e.g.:
type :: t(k)
integer, kind :: k
type(t(k+1)), pointer :: p
end type
we should detect the infinite recursion and complain rather
than looping until the stack overflows.
Differential Revision: https://reviews.llvm.org/D100065
Check for two or more symbols that define a data object or entry point
with the same interoperable BIND(C) name.
Differential Revision: https://reviews.llvm.org/D100067
Call static functions using the class name (fir::NameUniquer).
Add function for mangling derivedTypes.
All the name mangling functions that are ultimately called are
tested in unittests/Optimizer/InternalNamesTest.cpp.
Differential Revision: https://reviews.llvm.org/D99967
This patch adds two debugging options in the new Flang driver
(flang-new):
*fdebug-unparse-no-sema
*fdebug-dump-parse-tree-no-sema
Each of these options combines two options from the "throwaway" driver
(left: f18, right: flang-new):
* `-fdebug-uparse -fdebug-no-semantics` --> `-fdebug-unparse-no-sema`
* `-fdebug-dump-parse-tree -fdebug-no-semantics` -->
`-fdebug-dump-parse-tree-no-sema`
There are no plans to implement `-fdebug-no-semantics` in the new
driver. Such option would be too powerful. Also, it would only make
sense when combined with specific frontend actions (`-fdebug-unparse`
and `-fdebug-dump-parse-tree`). Instead, this patch adds 2 specialised
options listed above. Each of these is implemented through a dedicated
FrontendAction (also added).
The new frontend actions are implemented in terms of a new abstract base
action: `PrescanAndSemaAction`. This new base class was required so that
we can have finer control over what steps within the frontend are
executed:
* `PrescanAction`: run the _prescanner_
* `PrescanAndSemaAction`: run the _prescanner_ and the _parser_ (new
in this patch)
* `PrescanAndSemaAction`: run the _prescanner_, _parser_ and run the
_semantic checks_
This patch introduces `PrescanAndParseAction::BeginSourceFileAction`.
Apart from the semantic checks removed at the end, it is similar to
`PrescanAndSemaAction::BeginSourceFileAction`.
Differential Revision: https://reviews.llvm.org/D99645
The -fdebug-dump-provenance flag is meant to be used with
needProvenanceRangeToCharBlockMappings set to true. This way, extra
mapping is generated that allows e.g. IDEs to retrieve symbol's scope
(offset into cooked character stream) based on symbol's source code
location. This patch makes sure that this option is set when using
-fdebug-dump-provenance.
With this patch, the implementation of -fdebug-dump-provenance in
`flang-new -fc1` becomes consistent with `f18`. The corresponding LIT
test is updated so that it can be shared with `f18`. I refined it a bit
so that:
* it becomes a frontend-only test
* it's stricter about the expected output
Differential Revision: https://reviews.llvm.org/D98847
This patch adds support for the `-cpp` and `-nocpp` flags. The
implemented semantics match f18 (i.e. the "throwaway" driver), but are
different to gfortran. In Flang the preprocessor is always run. Instead,
`-cpp/-nocpp` are used to control whether predefined and command-line
preprocessor macro definitions are enabled or not. In practice this is
sufficient to model gfortran`s `-cpp/-nocpp`.
In the absence of `-cpp/-nocpp`, the driver will use the extension of
the input file to decide whether to include the standard macro
predefinitions. gfortran's documentation [1] was used to decide which
file extension to use for this.
The logic mentioned above was added in FrontendAction::BeginSourceFile.
That's relatively late in the driver set-up, but this roughly where the
name of the input file becomes available. The logic for deciding between
fixed and free form works in a similar way and was also moved to
FrontendAction::BeginSourceFile for consistency (and to reduce
code-duplication).
The `-cpp/-nocpp` flags are respected also when the input is read from
stdin. This is different to:
* gfortran (behaves as if `-cpp` was used)
* f18 (behaves as if `-nocpp` was used)
Starting with this patch, file extensions are significant and some test
files had to be renamed to reflect that. Where possible, preprocessor
tests were updated so that they can be shared between `f18` and
`flang-new`. This was implemented on top of adding new test for
`-cpp/-nocpp`.
[1] https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D99292
We were not folding type parameter inquiries for the form 'var%typeParam'
where 'typeParam' was a KIND or LEN type parameter of a derived type and 'var'
was a designator of the derived type. I fixed this by adding code to the
function 'FoldOperation()' for 'TypeParamInquiry's to handle this case. I also
cleaned up the code for the case where there is no designator.
In order to make the error messages correctly refer to both the points of
declaration and instantiation, I needed to add an argument to the function
'InstantiateIntrinsicType()' for the location of the instantiation.
I also changed the formatting of 'TypeParamInquiry' to correctly format this
case. I also added tests for both KIND and LEN type parameter inquiries in
resolve104.f90.
Making these changes revealed an error in resolve89.f90 and caused one of the
error messages in assign04.f90 to be different.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D99892
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
We were not folding type parameter inquiries for the form 'var%typeParam'
where 'typeParam' was a KIND or LEN type parameter of a derived type and 'var'
was a designator of the derived type. I fixed this by adding code to the
function 'FoldOperation()' for 'TypeParamInquiry's to handle this case. I also
cleaned up the code for the case where there is no designator.
In order to make the error messages correctly refer to both the points of
declaration and instantiation, I needed to add an argument to the function
'InstantiateIntrinsicType()' for the location of the instantiation.
I also changed the formatting of 'TypeParamInquiry' to correctly format this
case. I also added tests for both KIND and LEN type parameter inquiries in
resolve104.f90.
Making these changes revealed an error in resolve89.f90 and caused one of the
error messages in assign04.f90 to be different.
Differential Revision: https://reviews.llvm.org/D99892
A recent patch exposed an assumption that "long double" is (at least)
an 80-bit floating-point type, which of course it is not in MSVC.
Also get it right for non-x87 floating-point.
Add runtime APIs, implementations, and tests for ALL, ANY, COUNT,
MAXLOC, MAXVAL, MINLOC, MINVAL, PRODUCT, and SUM reduction
transformantional intrinsic functions for all relevant argument
and result types and kinds, both without DIM= arguments
(total reductions) and with (partial reductions).
Complex-valued reductions have their APIs in C so that
C's _Complex types can be used for their results.
Some infrastructure work was also necessary or noticed:
* Usage of "long double" in the compiler was cleaned up a
bit, and host dependences on x86 / MSVC have been isolated
in a new Common/long-double header.
* Character comparison has been exposed via an extern template
so that reductions could use it.
* Mappings from Fortran type category/kind to host C++ types
and vice versa have been isolated into runtime/cpp-type.h and
then used throughout the runtime as appropriate.
* The portable 128-bit integer package in Common/uint128.h
was generalized to support signed comparisons.
* Bugs in descriptor indexing code were fixed.
Differential Revision: https://reviews.llvm.org/D99666
f18 was emitting a bogus error message about the lack of a TARGET
attribute when a pointer was initialized with a component of a
variable that was a legitimate TARGET.
Differential Revision: https://reviews.llvm.org/D99665