The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
D111985 added the generic `__builtin_elementwise_max` and `__builtin_elementwise_min` intrinsics with the same integer behaviour as the SSE/AVX instructions
This patch removes the `__builtin_ia32_pmax/min` intrinsics and just uses `__builtin_elementwise_max/min` - the existing tests see no changes:
```
__m256i test_mm256_max_epu32(__m256i a, __m256i b) {
// CHECK-LABEL: test_mm256_max_epu32
// CHECK: call <8 x i32> @llvm.umax.v8i32(<8 x i32> %{{.*}}, <8 x i32> %{{.*}})
return _mm256_max_epu32(a, b);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Sibling patch to D117791
Differential Revision: https://reviews.llvm.org/D117798
tco is a tool to test the FIR to LLVM IR pipeline of the Flang compiler.
This patch update tco pipelines and adds the translation to LLVM IR.
A simple test is added to make sure the tool is working with a simple
FIR program.
More tests will be upstream in follow up patch from the fir-dev branch.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117781
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
The minimizing and caching filesystem used by the dependency scanner can be configured to **not** minimize some files. That's necessary when scanning a TU with prebuilt inputs (i.e. PCH) that refer to the original (non-minimized) files. Minimizing such files in the dependency scanner would cause discrepancy between the current perceived state of the filesystem and the file sizes stored in the AST file. By not minimizing such files, we avoid creating the discrepancy.
The problem with the current approach is that files that should not be minimized are identified by their path. This breaks down when the prebuilt input (PCH) and the current TU refer to the same file via different paths (i.e. symlinks). This patch switches from paths to `llvm::sys::fs::UniqueID` when identifying ignored files. This is consistent with how the rest of Clang treats files.
Depends on D114966.
Reviewed By: dexonsmith, arphaman
Differential Revision: https://reviews.llvm.org/D114971
The minimizing filesystem used by the dependency scanner isn't great when it comes to the consistency of its caches. There are two problems that can be exposed by a filesystem that changes during dependency scan:
1. In-memory cache entries for original and minimized files are distinct, populated at different times using separate stat/open syscalls. This means that when a file is read with minimization disabled, its contents might be inconsistent when the same file is read with minimization enabled at later point (and vice versa).
2. In-memory cache entries are indexed by filename. This is problematic for symlinks, where the contents of the symlink might be inconsistent with contents of the original file (for the same reason as in problem 1).
This patch ensures consistency by always stating/reading a file exactly once. The original contents are always cached and minimized contents are derived from that on demand. The cache entries are now indexed by their `UniqueID` ensuring consistency for symlinks too. Moreover, the stat/read syscalls are now issued outside of critical section.
Depends on D115935.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D114966
The return types of some `CachedFileSystemEntry` member function are needlessly complex.
This patch attempts to simplify the code by unwrapping cached entries that represent errors early, and then asserting `!isError()`.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D115935
D111986 added the generic `__builtin_elementwise_abs()` intrinsic with the same integer absolute behaviour as the SSE/AVX instructions (abs(INT_MIN) == INT_MIN)
This patch removes the `__builtin_ia32_pabs*` intrinsics and just uses `__builtin_elementwise_abs` - the existing tests see no changes:
```
__m256i test_mm256_abs_epi8(__m256i a) {
// CHECK-LABEL: test_mm256_abs_epi8
// CHECK: [[ABS:%.*]] = call <32 x i8> @llvm.abs.v32i8(<32 x i8> %{{.*}}, i1 false)
return _mm256_abs_epi8(a);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Differential Revision: https://reviews.llvm.org/D117791
This patch brings better splat-matching to our VP support, by sinking
splat operands of VP intrinsics back into the same block as the VP
operation. The list of VP intrinsics we are interested in matches that
of the regular instructions.
Some optimization is still lacking. For instance, our VL nodes aren't
recognized as commutative, so splats must be on the RHS. Because of
this, we limit our sinking of splats to just the RHS operand for now.
Improvement in this regard can come in another patch.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117703
The LangRef currently lacks a top-level production, leaving the productions attribute-alias-def and type-alias-defunused. Clarify the situation by declaring what is to be parsed by an MLIR parser at the toplevel.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D117668
Fix PR53163 by rounding the byte size of DW_TAG_base_type types up. Without
this fix we risk emitting types with a truncated size (including rounding
less-than-byte-sized types' sizes down to zero).
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D117124
These errors are non-harmful and should be transient. They either
imply:
- compilation database returned stale results for TUs and it'll be fixed once
it's updated to match project state.
- a TUs dependencies has changed and some headers no longer exist. this should
be fixed with the next indexing cycle.
In either case the user will have some stale symbols in their index until clangd
restarts and the underlying issue is resolved. On the downside these logs are
confusing users when there's another issue.
Differential Revision: https://reviews.llvm.org/D117792
As suggested on the bug, to help (but not completely....) stop folded instructions crossing the inline asm barriers used for llvm-mca analysis, we should recommend tagging with memory captures/attributes.
Differential Revision: https://reviews.llvm.org/D117788
If the bias is zero, we can remove it from the image instruction.
Also copy other image optimizations (l->lz, mip->nomip) to IR combines.
Differential Revision: https://reviews.llvm.org/D116042
As the codegen fix in D111754, the LOD bias needs to be converted to 16
bits. Fix this in the combine.
Differential Revision: https://reviews.llvm.org/D116038
Add documentation around:
* Removing JITDylib from the session
* Add support for custom program representation
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D116476
- Avoid using <iterator> for std::end on a plain array (using <array> instead)
- Avoid using <algorithm> for std::min and std::equal (using alternate logic and std::strcmp instead)
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Demangle/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 203965 lines
after: 169704 lines
This patch adds VPWidenIntOrFpInductionRecipe::isCanonical to check if
an induction recipe is canonical. The code is also updated to use it
instead of isCanonicalID.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D117551
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Demangle/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 208053 lines
after: 203965 lines
Peculiarly, the necessary code to handle pointers (including the
check for non-integral address spaces) is already in place,
because we were already allowing vectors of pointers here, just
not plain pointers.
In some cases, fusion can produce illegal operations if after fusion
the range of some of the loops cannot be computed from shapes of its
operands. Check for this case and abort the fusion if this happens.
Differential Revision: https://reviews.llvm.org/D117602
`CppHashInfo.Filename` is a `StringRef` that references a part of the
source file and it is not null-terminated at the end of the file name.
`AsmParser::parseAndMatchAndEmitTargetInstruction()` passes it to
`getStreamer().emitDwarfFileDirective()`, and it eventually comes to
`isRootFile()`. The comparison fails because `FileName.data()` is not
properly terminated.
In addition, the old code might cause a significant speed degradation
for long source files. The `operator!=()` for `std::string` and
`const char *` can be implemented in a way that it finds the length of
the second argument first, which slows the comparison for long data.
`parseAndMatchAndEmitTargetInstruction()` calls
`emitDwarfFileDirective()` every time if `CppHashInfo.Filename` is not
empty. As a result, the longer the source file is, the slower the
compilation wend, and for a very long file, it might take hours instead
of a couple of seconds normally.
Differential Revision: https://reviews.llvm.org/D117785
After D86836, we can define multiple cost values for
different cost models. So here we set CostPerUse to
1 iff RVC is enabled to avoid potential impact on RA.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117741
There are static and dynamic TLS address lowering in DAG stage according to different TLS model.
It needs PseudoTLSLA32 pseudo to get address of TLS-related entry which resides in constant pool.
This is superseded by the same method on OpAsmOpInterface, which is
available on the Dialect through the Fallback mechanism,
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117750
This extends dense attribute element access to support 8b and 16b ints.
Also extends the corresponding parts of the C api.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D117731
This allows to pipe sequences of `mlir-opt -split-input-file | mlir-opt -split-input-file`.
Depends On D117750
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117756
Zbkb supports some encodings of the general grevi, shfli, and
unshfli instructions legal, so we added separate instructions for
those encodings to improve the diagnostics for assembler and
disassembler. To be consistent we should always use these separate
instructions whenever those specific encodings of grevi/shfli/unshfli
occur. So this patch adds specific isel patterns to override the generic
isel patterns for these cases. Similar was done for rev8 and zext.h
for Zbb previously.