This removes the non-address bits before we try to use
the addresses.
Meaning that when results are shown, those results won't
show non-address bits either. This follows what "memory read"
has done. On the grounds that non-address bits are a property
of a pointer, not the memory pointed to.
I've added testing and merged the find and read tests into one
file.
Note that there are no API side changes because "memory find"
does not have an equivalent API call.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117299
Allow users to create aliases for aliases to raw input commands. That probably
sounds convoluted, so here's an example:
```
command alias some-setup env SOMEVAR=SOMEVALUE
```
This an alias based on `env`, which itself is an alias for `_regex-env`.
`_regex-env` is a `command regex` command, which takes raw input.
The above `some-setup` alias fails with:
```
error: Unable to create requested alias.
```
This change allows such aliases to be created. lldb already supports aliases to
aliases for parsed commands.
Differential Revision: https://reviews.llvm.org/D117259
The logic of `g_quiet` was inverted in D26243. This corrects the issue.
Without this, running `log timers enable` produces a high volume of incremental
timer output.
Differential Revision: https://reviews.llvm.org/D117837
The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
Instrument the SB API with signposts on Darwin. This gives us a time
profile on whose behalf LLDB spends time (particularly when run via the
SBAPI from an IDE).
Differential revision: https://reviews.llvm.org/D117632
Remove the last remaining references to the reproducers from the
instrumentation. This patch renames the relevant files and macros.
Differential revision: https://reviews.llvm.org/D117712
This patch works around what looks like a bug in Clang itself.
The error on the bot is:
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/40466/consoleText
In module 'LLVM_Utils' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/lldb/source/Plugins/ScriptInterpreter/Python/lldb-python.h:18:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Support/Error.h:720:3: error: 'llvm::Expected<bool>::(anonymous)' from module 'LLVM_Utils.Support.Error' is not present in definition of 'llvm::Expected<bool>' in module 'LLVM_Utils.Support.Error'
union {
^
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Support/Error.h:720:3: note: declaration of '' does not match
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Support/Error.h:720:3: note: declaration of '' does not match
1 error generated.
The intention is to revert this as soon as a proper fix has been identified!
rdar://87845391
Although the memory tag commands use a memory tag manager to handle
addresses, that only removes the top byte.
That top byte is 4 bits of memory tag and 4 free bits, which is more
than it should strictly remove but that's how it is for now.
There are other non-address bit uses like pointer authentication.
To ensure the memory tag manager only has to deal with memory tags,
use the ABI plugin to remove the rest.
The tag access test has been updated to sign all the relevant pointers
and require that we're running on a system with pointer authentication
in addition to memory tagging.
The pointers will look like:
<4 bit user tag><4 bit memory tag><signature><bit virtual address>
Note that there is currently no API for reading memory tags. It will
also have to consider this when it arrives.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117672
This better describes the intent of the method. Which for AArch64
is removing the top byte which includes the memory tags.
It does not include pointer signatures, for those we need to use
the ABI plugin. The rename makes this a little more clear.
It's a bit awkward that the memory tag manager is removing the whole
top byte not just the memory tags but it's an improvement for now.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117671
We got a few crash reports that showed LLDB initializing Python on two
separate threads. Make sure Python is initialized exactly once.
rdar://87287005
Differential revision: https://reviews.llvm.org/D117601
std::chrono::duration types are not thread-safe, and they cannot be
concurrently updated from multiple threads. Currently, we were doing
such a thing (only) in the DWARF indexing code
(DWARFUnit::ExtractDIEsRWLocked), but I think it can easily happen that
someone else tries to update another statistic like this without
bothering to check for thread safety.
This patch changes the StatsDuration type from a simple typedef into a
class in its own right. The class stores the duration internally as
std::atomic<uint64_t> (so it can be updated atomically), but presents it
to its users as the usual chrono type (duration<float>).
Differential Revision: https://reviews.llvm.org/D117474
It complements the existing SBDebugger::SetCurrentPlatformSDKRoot and
allows one to set the sysroot of a platform without making it current.
Differential Revision: https://reviews.llvm.org/D117550
This macro was being used to select the proper import/export annotations
on SB classes. Non-windows clients do not have such requirements.
Instead introduce a new macro (LLDB_IN_LIBLLDB), which signals that
we're compiling liblldb itself (and should use dllexport). The default
(no macro) is to use dllimport. I've moved the macro definition to
SBDefines.h, since it only makes sense when building the API library.
Differential Revision: https://reviews.llvm.org/D117564
Use libobjc.A.dylib as a sentinel to detect situations where we're
reading libraries from process memory instead of the shared cache.
Differential revision: https://reviews.llvm.org/D117623
Return our PythonObject wrappers instead of raw PyObjects (obfuscated as
void *). This ensures that ownership (reference counts) of python
objects is automatically tracked.
Differential Revision: https://reviews.llvm.org/D117462
Provide minimal register definition defaults for working with servers
that implement neither target.xml nor qRegisterInfo packets. This is
useful e.g. when interacting with FreeBSD's kernel minimal gdbserver
that does not send target.xml but uses the same layout for its supported
register subset as GDB.
The prerequisite for this is the ability to determine the correct
architecture, e.g. from the target executable.
Differential Revision: https://reviews.llvm.org/D116896
The GIL must be held when calling any Python C API functions. In multithreaded applications that use callbacks this requirement can easily be violated by accident. A general tool to ensure GIL health is not available, but patching Python Py_INCREF to add an assert provides a basic health check:
```
+int PyGILState_Check(void); /* Include/internal/pystate.h */
+
#define Py_INCREF(op) ( \
+ assert(PyGILState_Check()), \
_Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
((PyObject *)(op))->ob_refcnt++)
#define Py_DECREF(op) \
do { \
+ assert(PyGILState_Check()); \
PyObject *_py_decref_tmp = (PyObject *)(op); \
if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
--(_py_decref_tmp)->ob_refcnt != 0) \
```
Adding this assertion causes around 50 test failures in LLDB. Adjusting the scope of things guarded by `py_lock` fixes them.
More background: https://docs.python.org/3/glossary.html#term-global-interpreter-lock
Patch by Ralf Grosse-Kunstleve
Differential Revision: https://reviews.llvm.org/D114722
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
Recommitting after D116901 and D116863.
(cherry picked from commit 2c7d10c412)
This also removes the corresponding unit tests. I wrote them to sanity
check my original refactoring and checked them in because why not. The
current implementation, without the added complexity of indices, is
simple enough that we can do without it.
Currently, when connecting to a remote iOS device from the command line
on Apple Silicon, we end up using the host platform (PlatfromMacOSX)
instead of remote-ios (PlatformRemoteiOS). This happens because
PlatfromMacOSX includes arm64-apple-ios and arm64e-apple-ios as
compatible architectures, presumably to support debugging iOS Apps on
Apple Silicon [1].
This is a problem for debugging remote ios devices, because the host
platform doesn't look for an expanded shared cache on disk and as a
result we end up reading everything from memory, incurring a significant
performance hit.
The crux of this patch is to make PlatfromMacOSX *not* compatible with
arm64(e)-apple-ios. This also means that we now use remote-ios
(PlatformRemoteiOS) as the platform for debugging iOS apps on Apple
Silicon. This has the (unintended) side effect that unlike we do for the
host platform, we no longer check our local shared cache, and incur a
performance hit on debugging these apps.
To avoid that, PlatformRemoteiOS now also check the local cache to
support this use case, which is cheap enough to do unconditionally for
PlatformRemoteiOS.
[1] https://support.apple.com/guide/app-store/iphone-ipad-apps-mac-apple-silicon-fird2c7092da/mac
Differential revision: https://reviews.llvm.org/D117340
When LLDB receives a SIGINT while running the embedded Python REPL it
currently just crashes in ScriptInterpreterPythonImpl::Interrupt with an
error such as the one below:
Fatal Python error: PyThreadState_Get: the function must be called
with the GIL held, but the GIL is released (the current Python thread
state is NULL)
The faulty code that causes this error is this part of
ScriptInterpreterPythonImpl::Interrupt:
PyThreadState *state = PyThreadState_GET();
if (!state)
state = GetThreadState();
if (state) {
long tid = state->thread_id;
PyThreadState_Swap(state);
int num_threads = PyThreadState_SetAsyncExc(tid, PyExc_KeyboardInterrupt);
The obvious fix I tried is to just acquire the GIL before this code is
running which fixes the crash but the KeyboardInterrupt we want to raise
immediately is actually just queued and would only be raised once the
next line of input has been parsed (which e.g. won't interrupt Python
code that is currently waiting on a timer or IO from what I can see).
Also none of the functions we call here is marked as safe to be called
from a signal handler from what I can see, so we might still end up
crashing here with some bad timing.
Python 3.2 introduced PyErr_SetInterrupt to solve this and the function
takes care of all the details and avoids doing anything that isn't safe
to do inside a signal handler. The only thing we need to do is to
manually setup our own fake SIGINT handler that behaves the same way as
the standalone Python REPL signal handler (which raises a
KeyboardInterrupt).
From what I understand the old code used to work with Python 2 so I kept
the old code around until we officially drop support for Python 2.
There is a small gap here with Python 3.0->3.1 where we might still be
crashing, but those versions have reached their EOL more than a decade
ago so I think we don't need to bother about them.
Differential revision: https://reviews.llvm.org/D104886
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113
Set the current thread ID to the thread where an event happened.
As a result, e.g. when a signal is delivered to a thread other than
the first one, the respective T packet refers to the signaled thread
rather than the first thread (with no stop reason). While this doesn't
strictly make a difference to the LLDB client, it is the expected
behavior.
Differential Revision: https://reviews.llvm.org/D117103
"shell" is an alias to "platform shell -h --". Previously you would get this
help text:
(lldb) help shell
Run a shell command on the host. Expects 'raw' input (see 'help raw-input'.)
Syntax: shell <shell-command>
Command Options Usage:
'shell' is an abbreviation for 'platform shell -h --'
Since the code doesn't handle the base command having options
but the alias removing them. With these changes you get:
(lldb) help shell
Run a shell command on the host. Expects 'raw' input (see 'help raw-input'.)
Syntax: shell <shell-command>
'shell' is an abbreviation for 'platform shell -h --'
Note that we already handle a non-alias command having no options,
for example "quit":
(lldb) help quit
Quit the LLDB debugger.
Syntax: quit [exit-code]
Reviewed By: JDevlieghere, jingham
Differential Revision: https://reviews.llvm.org/D117004
This adds inline function support to NativePDB by parsing S_INLINESITE records
to retrieve inlinee line info and add them into line table at `ParseLineTable`.
Differential Revision: https://reviews.llvm.org/D116845
Several of the comments were annotating the wrong argument.
I caught this while reviewing this clean-up: 8afcfbfb8f
which was changing booleans to use true and false and in the this case the comment and the type looked mismatched.
Differential Revision: https://reviews.llvm.org/D116982
Addresses on AArch64 can have top byte tags, memory tags and pointer
authentication signatures in the upper bits.
While testing memory tagging I found that memory read couldn't
read a range if the two addresses had different tags. The same
could apply to signed pointers given the right circumstance.
(lldb) memory read mte_buf_alt_tag mte_buf+16
error: end address (0x900fffff7ff8010) must be greater than the start
address (0xa00fffff7ff8000).
Or it would try to read a lot more memory than expected.
(lldb) memory read mte_buf mte_buf_alt_tag+16
error: Normally, 'memory read' will not read over 1024 bytes of data.
error: Please use --force to override this restriction just once.
error: or set target.max-memory-read-size if you will often need a
larger limit.
Fix this by removing non address bits before we calculate the read
range. A test is added for AArch64 Linux that confirms this by using
the top byte ignore feature.
This means that if you do read with a tagged pointer the output
does not include those tags. This is potentially confusing but I think
overall it's better that we don't pretend that we're reading memory
from a range that the process is unable to map.
(lldb) p ptr1
(char *) $4 = 0x3400fffffffff140 "\x80\xf1\xff\xff\xff\xff"
(lldb) p ptr2
(char *) $5 = 0x5600fffffffff140 "\x80\xf1\xff\xff\xff\xff"
(lldb) memory read ptr1 ptr2+16
0xfffffffff140: 80 f1 ff ff ff ff 00 00 38 70 bc f7 ff ff 00 00 ........8p......
Reviewed By: omjavaid, danielkiss
Differential Revision: https://reviews.llvm.org/D103626
Previously we would persist the flags indicating whether the remote side
supports a particular feature across reconnects, which is obviously not
a good idea.
I implement the clearing by nuking (its the only way to be sure :) the
entire GDBRemoteCommunication object in the disconnect operation and
creating a new one upon connection. This allows us to maintain a nice
invariant that the GDBRemoteCommunication object (which is now a
pointer) exists only if it is connected. The downside to that is that a
lot of functions now needs to check the validity of the pointer instead
of blindly accessing the object.
The process communication does not suffer from the same issue because we
always destroy the entire Process object for a relaunch.
Differential Revision: https://reviews.llvm.org/D116539
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
(cherry picked from commit 2c7d10c412)