After transforming FP to ST registers:
- Do not add the ST register to the livein lists, they are reserved so
we do not need to track their liveness.
- Remove the FP registers from the livein lists, they don't have defs or
uses anymore and so are not live.
- (The setKillFlags() call is moved to an earlier place as it relies on
the FP registers still being present in the livein list.)
llvm-svn: 304342
The change is part of RegCall calling convention support for LLVM.
Long double (f80) requires special treatment as the first f80 parameter is saved in FP0 (floating point stack).
This review present the change and the corresponding tests.
Differential Revision: https://reviews.llvm.org/D26151
llvm-svn: 287485
Summary: This makes a change to the state used to maintain visited information for depth first iterator. We know assume a method "completed(...)" which is called after all children of a node have been visited. In all existing cases, this method does nothing so this patch has no functional changes. It will however allow a client to distinguish back from cross edges in a DFS tree.
Reviewers: nadav, mehdi_amini, dberlin
Subscribers: MatzeB, mzolotukhin, twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D25191
llvm-svn: 283391
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
Avoid implicit conversions from MachineInstrBundleIterator to
MachineInstr*, mainly by preferring MachineInstr& over MachineInstr* and
using range-based for loops.
llvm-svn: 275149
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.
Reviewers: qcolombet
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18525
llvm-svn: 265313
The x86 ret instruction has a 16 bit immediate indicating how many bytes
to pop off of the stack beyond the return address.
There is a problem when extremely large structs are passed by value: we
might not be able to fit the number of bytes to pop into the return
instruction.
To fix this, expand RET_FLAG a little later and use a special sequence
to clean the stack:
pop %ecx ; return address is now in %ecx
add $n, %esp ; clean the stack
push %ecx ; bring the return address back on the stack
ret ; pop the return address and jmp to it's value
llvm-svn: 262755
With subregister liveness enabled we can detect the case where only
parts of a register are live in, this is expressed as a 32bit lanemask.
The current code only keeps registers in the live-in list and therefore
enumerated all subregisters affected by the lanemask. This turned out to
be too conservative as the subregister may also cover additional parts
of the lanemask which are not live. Expressing a given lanemask by
enumerating a minimum set of subregisters is computationally expensive
so the best solution is to simply change the live-in list to store the
lanemasks as well. This will reduce memory usage for targets using
subregister liveness and slightly increase it for other targets
Differential Revision: http://reviews.llvm.org/D12442
llvm-svn: 247171
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
llvm-svn: 242173
Duplicating an FP register "as itself" is a bad idea, since it violates the
invariant that every FP register is mapped to at most one FPU stack slot.
Use the scratch FP register instead.
This fixes PR23957.
llvm-svn: 241069
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
llvm-svn: 230710
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
It appears to ignore or find ambiguous MachineInstrBuilder's conversion
operators that allow conversion to MachineInstr* and
MachineBasicBlock::bundle_iterator.
As a workaround, add an explicit way to get the MachineInstr.
llvm-svn: 221017
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
GCC 4.8.2 points out the ambiguity in evaluation of the assertion condition:
lib/Target/X86/X86FloatingPoint.cpp:949:49: warning: suggest parentheses around ‘&&’ within ‘||’ [-Wparentheses]
assert(STReturns == 0 || isMask_32(STReturns) && N <= 2);
llvm-svn: 214672
Stop using ST registers for function returns and inline-asm instructions and use
FP registers instead. This allows removing a large amount of code in the
stackifier pass that was needed to track register liveness and handle copies
between ST and FP registers and function calls returning floating point values.
It also fixes a bug which manifests when an ST register defined by an
inline-asm instruction was live across another inline-asm instruction, as shown
in the following sequence of machine instructions:
1. INLINEASM <es:frndint> $0:[regdef], %ST0<imp-def,tied5>
2. INLINEASM <es:fldcw $0>
3. %FP0<def> = COPY %ST0
<rdar://problem/16952634>
llvm-svn: 214580
This finishes the job started in r198756, and creates separate opcodes for
64-bit vs. 32-bit versions of the rest of the RET instructions too.
LRETL/LRETQ are interesting... I can't see any justification for their
existence in the SDM. There should be no 'LRETL' in 64-bit mode, and no
need for a REX.W prefix for LRETQ. But this is what GAS does, and my
Sandybridge CPU and an Opteron 6376 concur when tested as follows:
asm __volatile__("pushq $0x1234\nmovq $0x33,%rax\nsalq $32,%rax\norq $1f,%rax\npushq %rax\nlretl $8\n1:");
asm __volatile__("pushq $1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
asm __volatile__("pushq $0x33\npushq $1f\nlretq\n1:");
asm __volatile__("pushq $0x1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
cf. PR8592 and commit r118903, which added LRETQ. I only added LRETIQ to
match it.
I don't quite understand how the Intel syntax parsing for ret
instructions is working, despite r154468 allegedly fixing it. Aren't the
explicitly sized 'retw', 'retd' and 'retq' supposed to work? I have at
least made the 'lretq' work with (and indeed *require*) the 'q'.
llvm-svn: 199106
I couldn't see how to do this sanely without splitting RETQ from RETL.
Eric says: "sad about the inability to roundtrip them now, but...".
I have no idea what that means, but perhaps it wants preserving in the
commit comment.
llvm-svn: 198756
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131