subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
llvm-svn: 146436
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
handle defining the "magic" target related components (like native,
nativecodegen, and engine).
- We still require these components to be in the project (currently in
lib/Target) so that we have a place to document them and hopefully make it
more obvious that they are "magic".
llvm-svn: 144253
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
llvm-svn: 139159
TableGen deps introduced in r136023. This completes the fixing that
dgregor started in r136621. Sorry for missing these the first time
around.
This should fix some of the random race-condition failures people are
still seeing with CMake.
llvm-svn: 136643
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
LLVM*AsmPrinter.
GenLibDeps.pl fails to detect vtable references. As this is the only
referenced symbol from LLVM*Desc to LLVM*AsmPrinter on optimized
builds, the algorithm that creates the list of libraries to be linked
into tools doesn't know about the dependency and sometimes places the
libraries on the wrong order, yielding error messages like this:
../../lib/libLLVMARMDesc.a(ARMMCTargetDesc.cpp.o): In function
`llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo const&)':
ARMMCTargetDesc.cpp:(.text._ZN4llvm14ARMInstPrinterC1ERKNS_9MCAsmInfoE
[llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo
const&)]+0x2a): undefined reference to `vtable for
llvm::ARMInstPrinter'
llvm-svn: 136328
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
llvm-svn: 135580
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424
and MCSubtargetInfo.
- Added methods to update subtarget features (used when targets automatically
detect subtarget features or switch modes).
- Teach X86Subtarget to update MCSubtargetInfo features bits since the
MCSubtargetInfo layer can be shared with other modules.
- These fixes .code 16 / .code 32 support since mode switch is updated in
MCSubtargetInfo so MC code emitter can do the right thing.
llvm-svn: 134884
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
itineraries.
- Refactor TargetSubtarget to be based on MCSubtargetInfo.
- Change tablegen generated subtarget info to initialize MCSubtargetInfo
and hide more details from targets.
llvm-svn: 134257
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
llvm-svn: 133782
This simplifies many of the target description files since it is common
for register classes to be related or contain sequences of numbered
registers.
I have verified that this doesn't change the files generated by TableGen
for ARM and X86. It alters the allocation order of MBlaze GPR and Mips
FGR32 registers, but I believe the change is benign.
llvm-svn: 133105
The register allocators automatically filter out reserved registers and
place the callee saved registers last in the allocation order, so custom
methods are no longer necessary just for that.
Some targets still use custom allocation orders:
ARM/Thumb: The high registers are removed from GPR in thumb mode. The
NEON allocation orders prefer to use non-VFP2 registers first.
X86: The GR8 classes omit AH-DH in x86-64 mode to avoid REX trouble.
SystemZ: Some of the allocation orders are omitting R12 aliases without
explanation. I don't understand this target well enough to fix that. It
looks like all the boilerplate could be removed by reserving the right
registers.
llvm-svn: 132781
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
llvm-svn: 127986
of testing for its presence at cmake time.
This way the build automatically regenerates the makefiles when a svn
update brings in a new sublibrary.
llvm-svn: 126068
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
llvm-svn: 118167
that caused the circular dependencies on Linux.
Built OK for me on OSX and Linux (Ubuntu) with configure/make and CMake. Will
keep an eye on the bots....
llvm-svn: 115582
use MC instructions in the printInstruction() method via the tablegen flag
for it rather than a #define prior to including the autogenerated bits.
llvm-svn: 115238
passed the root of the match, even though only a few patterns
actually needed this (one in X86, several in ARM [which should
be refactored anyway], and some in CellSPU that I don't feel
like detangling). Instead of requiring all ComplexPatterns to
take the dead root, have targets opt into getting the root by
putting SDNPWantRoot on the ComplexPattern.
llvm-svn: 114471
This problem is unrelated to the recent dependency tracking change. It
seems like noone noticed the problem because I don't think anyone compiles
any target other than X86 on windows.
llvm-svn: 113727
ARM/PPC/MSP430-specific code (which are the only targets that
implement the hook) can directly reference their target-specific
instrinfo classes.
llvm-svn: 109171
assert()s, switching to void-casts. Removed an unneeded Compiler.h include as
a result. There are two other uses in LLVM, but they're not due to assert()s,
so I've left them alone.
llvm-svn: 108088
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
llvm-svn: 106243
A Register with subregisters must also provide SubRegIndices for adressing the
subregisters. TableGen automatically inherits indices for sub-subregisters to
minimize typing.
CompositeIndices may be specified for the weirder cases such as the XMM sub_sd
index that returns the same register, and ARM NEON Q registers where both D
subregs have ssub_0 and ssub_1 sub-subregs.
It is now required that all subregisters are named by an index, and a future
patch will also require inherited subregisters to be named. This is necessary to
allow composite subregister indices to be reduced to a single index.
llvm-svn: 104704
A Register with subregisters must also provide SubRegIndices for adressing the
subregisters. TableGen automatically inherits indices for sub-subregisters to
minimize typing.
CompositeIndices may be specified for the weirder cases such as the XMM sub_sd
index that returns the same register, and ARM NEON Q registers where both D
subregs have ssub_0 and ssub_1 sub-subregs.
It is now required that all subregisters are named by an index, and a future
patch will also require inherited subregisters to be named. This is necessary to
allow composite subregister indices to be reduced to a single index.
llvm-svn: 104654
structure that represents a mapping without any dependencies on SubRegIndex
numbering.
This brings us closer to being able to remove the explicit SubRegIndex
numbering, and it is now possible to specify any mapping without inventing
*_INVALID register classes.
llvm-svn: 104563
Move EmitTargetCodeForMemcpy, EmitTargetCodeForMemset, and
EmitTargetCodeForMemmove out of TargetLowering and into
SelectionDAGInfo to exercise this.
llvm-svn: 103481
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
When a target instruction wants to set target-specific flags, it should simply
set bits in the TSFlags bit vector defined in the Instruction TableGen class.
This works well because TableGen resolves member references late:
class I : Instruction {
AddrMode AM = AddrModeNone;
let TSFlags{3-0} = AM.Value;
}
let AM = AddrMode4 in
def ADD : I;
TSFlags gets the expected bits from AddrMode4 in this example.
llvm-svn: 100384
"asm printering" happens through MCStreamer. This also
Streamerizes PIC16 debug info, which escaped my attention.
This removes a leak from LLVMTargetMachine of the 'legacy'
output stream.
llvm-svn: 100327
raw_ostream to print an instruction to had to be specified
at MCInstPrinter construction time instead of being able
to pick at each call to printInstruction.
llvm-svn: 100307
create symbols. It is extremely error prone and a source of a lot
of the remaining integrated assembler bugs on x86-64.
This fixes rdar://7807601.
llvm-svn: 99902
and passing off ownership to AsmPrinter. Now MachineModuleInfo
creates it and owns it by value. This allows us to use MCSymbols
more consistently throughout the rest of the code generator, and
simplifies a bit of code. This also allows MachineFunction to
keep an MCContext reference handy, and cleans up the TargetRegistry
interfaces for AsmPrinters.
llvm-svn: 98450
is preparatory to having PEI's scavenged frame index value reuse logic
properly distinguish types of frame values (e.g., whether the value is
stack-pointer relative or frame-pointer relative).
No functionality change.
llvm-svn: 98086
CopyToReg/CopyFromReg/INLINEASM. These are annoying because
they have the same opcode before an after isel. Fix this by
setting their NodeID to -1 to indicate that they are selected,
just like what automatically happens when selecting things that
end up being machine nodes.
With that done, give IsLegalToFold a new flag that causes it to
ignore chains. This lets the HandleMergeInputChains routine be
the one place that validates chains after a match is successful,
enabling the new hotness in chain processing. This smarter
chain processing eliminates the need for "PreprocessRMW" in the
X86 and MSP430 backends and enables MSP to start matching it's
multiple mem operand instructions more aggressively.
I currently #if out the dead code in the X86 backend and MSP
backend, I'll remove it for real in a follow-on patch.
The testcase changes are:
test/CodeGen/X86/sse3.ll: we generate better code
test/CodeGen/X86/store_op_load_fold2.ll: PreprocessRMW was
miscompiling this before, we now generate correct code
Convert it to filecheck while I'm at it.
test/CodeGen/MSP430/Inst16mm.ll: Add a testcase for mem/mem
folding to make anton happy. :)
llvm-svn: 97596
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
llvm-svn: 97555
IsLegalToFold and IsProfitableToFold. The generic version of the later simply checks whether the folding candidate has a single use.
This allows the target isel routines more flexibility in deciding whether folding makes sense. The specific case we are interested in is folding constant pool loads with multiple uses.
llvm-svn: 96255
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
the end of the instruction instead of expecting the caller to
do it. This currently causes the asm-verbose instruction
comments to be on the next line.
llvm-svn: 95178
than DEBUG_VALUE :( ) into the target indep AsmPrinter.cpp
file. This allows elimination of the
NO_ASM_WRITER_BOILERPLATE hack among other things.
llvm-svn: 95177
Move the X86 implementation of function body emission up to
AsmPrinter::EmitFunctionBody, which works by calling the virtual
EmitInstruction method.
llvm-svn: 94716
Target independent isel should always pass along the "tail call" property. Change
target hook LowerCall's parameter "isTailCall" into a refernce. If the target
decides it's impossible to honor the tail call request, it should set isTailCall
to false to make target independent isel happy.
llvm-svn: 94626
Default HasSetDirective to true, since most targets have it.
The targets that claim to not have it probably do, or it is
spelled differently. These include Blackfin, Mips, Alpha, and
PIC16. All of these except pic16 are normal ELF targets, so
they almost certainly have it.
llvm-svn: 94585
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
llvm-svn: 94164
I really want clients of the streamer to be able to say "emit this
64-bit integer" and have it get broken down right by the streamer.
I may change this in the future, we'll see how it works out.
llvm-svn: 93934
doing global variable classification anymore) and hookized, sink almost
all target targets global variable emission code into AsmPrinter and out
of each target.
Some notes:
1. PIC16 does completely custom and crazy stuff, so it is not changed.
2. XCore has some custom handling for extra directives. I'll look at it next.
3. This switches linux/ppc to use .globl instead of .global. If .globl is
actually wrong, let me know and I'll fix it.
4. This makes linux/ppc get a lot of random cases right which were obviously
wrong before, it is probably now a bit healthier.
5. Blackfin will probably start getting .comm and other things that it didn't
before. If this is undesirable, it should explicitly opt out of these
things by clearing the relevant fields of MCAsmInfo.
This leads to a nice diffstat:
14 files changed, 127 insertions(+), 830 deletions(-)
llvm-svn: 93858
clear what information these functions are actually using.
This is also a micro-optimization, as passing a SDNode * around is
simpler than passing a { SDNode *, int } by value or reference.
llvm-svn: 92564
(0 && "error"). Rough consensus seems to be that g++ *should* be diagnosing
this because the pointer makes it not an ICE in c++03. Everyone agrees that
the current standard is silly and null-pointer-ness should not be based on
ICE-ness. Excellent fight scene in Act II, denouement weak, two stars.
llvm-svn: 91644
slots. The AsmPrinter will use this information to determine whether to
print a spill/reload comment.
Remove default argument values. It's too easy to pass a wrong argument
value when multiple arguments have default values. Make everything
explicit to trap bugs early.
Update all targets to adhere to the new interfaces..
llvm-svn: 87022
This patch forbids implicit conversion of DenseMap::const_iterator to
DenseMap::iterator which was possible because DenseMapIterator inherited
(publicly) from DenseMapConstIterator. Conversion the other way around is now
allowed as one may expect.
The template DenseMapConstIterator is removed and the template parameter
IsConst which specifies whether the iterator is constant is added to
DenseMapIterator.
Actually IsConst parameter is not necessary since the constness can be
determined from KeyT but this is not relevant to the fix and can be addressed
later.
Patch by Victor Zverovich!
llvm-svn: 86636
The KILL pseudo-instruction may survive to the asm printer pass, just like the IMPLICIT_DEF. Print the KILL as a comment instead of just leaving a blank line in the output.
With -asm-verbose=0, a blank line is printed, like IMPLICIT?DEF.
llvm-svn: 86041
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
llvm-svn: 85517
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.
eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.
ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.
llvm-svn: 83467
verbose-asm mode, print comments instead. This eliminates a non-comment
difference between verbose-asm mode and non-verbose-asm mode.
Also, factor out the relevant code out of all the targets and into
target-independent code.
llvm-svn: 83392
naming scheme used in SelectionDAG, where there are multiple kinds
of "target" nodes, but "machine" nodes are nodes which represent
a MachineInstr.
llvm-svn: 82790
the MCInst path of the asmprinter. Instead, pull comment printing
out of the autogenerated asmprinter into each target that uses the
autogenerated asmprinter. This causes code duplication into each
target, but in a way that will be easier to clean up later when more
asmprinter stuff is commonized into the base AsmPrinter class.
This also fixes an xcore strangeness where it inserted two tabs
before every instruction.
llvm-svn: 81396